Основы квантовой механики. Введение

Квантовая механика
Δ x ⋅ Δ p x ⩾ ℏ 2 {\displaystyle \Delta x\cdot \Delta p_{x}\geqslant {\frac {\hbar }{2}}}
Введение
Математические основы
См. также: Портал:Физика

Ква́нтовая меха́ника - раздел теоретической физики , описывающий физические явления, в которых действие сравнимо по величине с постоянной Планка . Предсказания квантовой механики могут существенно отличаться от предсказаний классической механики . Поскольку постоянная Планка является чрезвычайно малой величиной по сравнению с действием объектов при макроскопическом движении, квантовые эффекты в основном проявляются в микроскопических масштабах. Если физическое действие системы намного больше постоянной Планка, квантовая механика органически переходит в классическую механику. В свою очередь, квантовая механика является нерелятивистским приближением (то есть приближением малых энергий по сравнению с энергией покоя массивных частиц системы) квантовой теории поля .

Классическая механика, хорошо описывающая системы макроскопических масштабов, не способна описать все явления на уровне молекул , атомов , электронов и фотонов . Квантовая механика адекватно описывает основные свойства и поведение атомов, ионов , молекул, конденсированных сред и других систем с электронно-ядерным строением. Квантовая механика также способна описывать: поведение электронов, фотонов, а также других элементарных частиц , однако более точное релятивистски инвариантное описание превращений элементарных частиц строится в рамках квантовой теории поля. Эксперименты подтверждают результаты, полученные с помощью квантовой механики.

Основными понятиями квантовой кинематики являются понятия наблюдаемой и состояния .

Основные уравнения квантовой динамики - уравнение Шрёдингера , уравнение фон Неймана , уравнение Линдблада , уравнение Гейзенберга и уравнение Паули .

Уравнения квантовой механики тесно связаны со многими разделами математики, среди которых: теория операторов , теория вероятностей , функциональный анализ , операторные алгебры , теория групп .

История

На заседании Немецкого физического общества Макс Планк зачитал свою историческую статью «К теории распределения энергии излучения в нормальном спектре» , в которой он ввёл универсальную постоянную h {\displaystyle h} . Именно дату этого события, 14 декабря 1900 года, часто считают днем рождения квантовой теории.

Для объяснения структуры атома Нильс Бор предложил в 1913 году существование стационарных состояний электрона, в которых энергия может принимать лишь дискретные значения. Этот подход, развитый Арнольдом Зоммерфельдом и другими физиками, часто называют старой квантовой теорией (1900-1924 г.). Отличительной чертой старой квантовой теории является сочетание классической теории с противоречащими ей дополнительными предположениями.

  • Чистые состояния системы описываются ненулевыми векторами комплексного сепарабельного гильбертова пространства H {\displaystyle H} , причем векторы | ψ 1 ⟩ {\displaystyle |\psi _{1}\rangle } и | ψ 2 ⟩ {\displaystyle |\psi _{2}\rangle } описывают одно и то же состояние тогда и только тогда , когда | ψ 2 ⟩ = c | ψ 1 ⟩ {\displaystyle |\psi _{2}\rangle =c|\psi _{1}\rangle } , где c {\displaystyle c} - произвольное комплексное число.
  • Каждой наблюдаемой можно однозначно сопоставить линейный самосопряжённый оператор. При измерении наблюдаемой A ^ {\displaystyle {\hat {A}}} , при чистом состоянии системы | ψ ⟩ {\displaystyle |\psi \rangle } в среднем получается значение, равное
⟨ A ⟩ = ⟨ ψ | A ^ ψ ⟩ ⟨ ψ | ψ ⟩ = ⟨ ψ A ^ | ψ ⟩ ⟨ ψ | ψ ⟩ {\displaystyle \langle A\rangle ={\frac {\langle \psi |{\hat {A}}\psi \rangle }{\langle \psi |\psi \rangle }}={\frac {\langle \psi {\hat {A}}|\psi \rangle }{\langle \psi |\psi \rangle }}}

где через ⟨ ψ | ϕ ⟩ {\displaystyle \langle \psi |\phi \rangle } обозначается скалярное произведение векторов | ψ ⟩ {\displaystyle |\psi \rangle } и | ϕ ⟩ {\displaystyle |\phi \rangle } .

  • Эволюция чистого состояния гамильтоновой системы определяется уравнением Шрёдингера
i ℏ ∂ ∂ t | ψ ⟩ = H ^ | ψ ⟩ {\displaystyle i\hbar {\frac {\partial }{\partial t}}|\psi \rangle ={\hat {H}}|\psi \rangle }

где H ^ {\displaystyle {\hat {H}}} - гамильтониан .

Основные следствия этих положений:

  • При измерении любой квантовой наблюдаемой, возможно получение только ряда фиксированных её значений, равных собственным значениям её оператора - наблюдаемой.
  • Наблюдаемые одновременно измеримы (не влияют на результаты измерений друг друга) тогда и только тогда, когда соответствующие им самосопряжённые операторы перестановочны .

Эти положения позволяют создать математический аппарат, пригодный для описания широкого спектра задач в квантовой механике гамильтоновых систем, находящихся в чистых состояниях. Не все состояния квантово-механических систем, однако, являются чистыми. В общем случае состояние системы является смешанным и описывается матрицей плотности , для которой справедливо обобщение уравнения Шрёдингера - уравнение фон Неймана (для гамильтоновых систем). Дальнейшее обобщение квантовой механики на динамику открытых, негамильтоновых и диссипативных квантовых систем приводит к уравнению Линдблада .

Стационарное уравнение Шрёдингера

Пусть амплитуда вероятности нахождения частицы в точке М . Стационарное уравнение Шрёдингера позволяет её определить.
Функция ψ (r →) {\displaystyle \psi ({\vec {r}})} удовлетворяет уравнению:

− ℏ 2 2 m ∇ 2 ψ + U (r →) ψ = E ψ {\displaystyle -{{\hbar }^{2} \over 2m}{\nabla }^{\,2}\psi +U({\vec {r}})\psi =E\psi }

где ∇ 2 {\displaystyle {\nabla }^{\,2}} -оператор Лапласа , а U = U (r →) {\displaystyle U=U({\vec {r}})} - потенциальная энергия частицы как функция от .

Решение этого уравнения и есть основная задача квантовой механики. Примечательно то, что точное решение стационарного уравнения Шрёдингера может быть получено только для нескольких, сравнительно простых, систем. Среди таких систем можно выделить квантовый гармонический осциллятор и атом водорода . Для большинства реальных систем для получения решений могут быть использованы различные приближенные методы, такие как теория возмущений .

Решение стационарного уравнения

Пусть E и U две постоянные, независимые от r → {\displaystyle {\vec {r}}} .
Записав стационарное уравнение как:

∇ 2 ψ (r →) + 2 m ℏ 2 (E − U) ψ (r →) = 0 {\displaystyle {\nabla }^{\,2}\psi ({\vec {r}})+{2m \over {\hbar }^{2}}(E-U)\psi ({\vec {r}})=0}
  • Если E - U > 0 , то:
ψ (r →) = A e − i k → ⋅ r → + B e i k → ⋅ r → {\displaystyle \psi ({\vec {r}})=Ae^{-i{\vec {k}}\cdot {\vec {r}}}+Be^{i{\vec {k}}\cdot {\vec {r}}}} где: k = 2 m (E − U) ℏ {\displaystyle k={\frac {\sqrt {2m(E-U)}}{\hbar }}} - модуль волнового вектора ; A и B - две постоянные, определяющиеся граничными условиями .
  • Если E - U < 0 , то:
ψ (r →) = C e − k → ⋅ r → + D e k → ⋅ r → {\displaystyle \psi ({\vec {r}})=Ce^{-{\vec {k}}\cdot {\vec {r}}}+De^{{\vec {k}}\cdot {\vec {r}}}} где: k = 2 m (U − E) ℏ {\displaystyle k={\frac {\sqrt {2m(U-E)}}{\hbar }}} - модуль волнового вектора ; C и D - две постоянные, также определяющиеся граничными условиями .

Принцип неопределённости Гейзенберга

Соотношение неопределённости возникает между любыми квантовыми наблюдаемыми, определяемыми некоммутирующими операторами.

Неопределенность между координатой и импульсом

Пусть - среднеквадратическое отклонение координаты частицы M {\displaystyle M} , движущейся вдоль оси x {\displaystyle x} , и - среднеквадратическое отклонение её импульса . Величины Δ x {\displaystyle \Delta x} и Δ p {\displaystyle \Delta p} связаны следующим неравенством:

Δ x Δ p ⩾ ℏ 2 {\displaystyle \Delta x\Delta p\geqslant {\frac {\hbar }{2}}}

где h {\displaystyle h} - постоянная Планка, а ℏ = h 2 π . {\displaystyle \hbar ={\frac {h}{2\pi }}.}

Согласно соотношению неопределённостей, невозможно абсолютно точно определить одновременно координаты и импульс частицы. С повышением точности измерения координаты, максимальная точность измерения импульса уменьшается и наоборот. Те параметры, для которых такое утверждение справедливо, называются канонически сопряженными .

Это центрирование на измерении, идущее от Н.Бора, очень популярно. Однако соотношение неопределенности выводится теоретически из постулатов Шрёдингера и Борна и касается не измерения, а состояний объекта: оно утверждает, что для любого возможного состояния выполняются соответствующие соотношения неопределенности. Естественно, что оно будет выполняться и для измерений. Т.е. вместо "с повышением точности измерения координаты максимальная точность измерения импульса уменьшается" следует говорить: "в состояниях, где неопределенность координаты меньше, неопределенность импульса больше".

Неопределенность между энергией и временем

Пусть Δ E {\displaystyle \Delta E} - среднеквадратическое отклонение при измерении энергии некоторого состояния квантовой системы, и Δ t {\displaystyle \Delta t} - время жизни этого состояния. Тогда выполняется следующее неравенство,

Δ E Δ t ⩾ ℏ 2 . {\displaystyle \Delta E\Delta t\geqslant {\frac {\hbar }{2}}.}

Иными словами, состояние, живущее короткое время, не может иметь хорошо определённую энергию.

При этом, хотя вид этих двух соотношений неопределенности похож, но их природа (физика) совершенно различны.

Формирование квантовой механики как последовательной теории с конкретными физическими основами во многом связано с работой В.Гейзенберга, в которой было сформулировано соотношение (принцип) неопределенностей . Это фундаментальное положение квантовой механики раскрывает физический смысл ее уравнений, а также определяет ее связь с классической механикой.

Принцип неопределенности постулирует:объект микромира не может находиться в состояниях, в которых координаты его центра инерции и импульс одновременно принимают вполне определенные, точные значения .

Количественно этот принцип формулируется следующим образом. Если ∆x – неопределенность значения координатыx , а∆p - неопределенность импульса, то произведение этих неопределенностей по порядку величины не может быть меньше постоянной Планка:

x p h.

Из принципа неопределенности следует, что, чем точнее определена одна из входящих в неравенство величин, тем с меньшей точностью определено значение другой. Никаким экспериментом невозможно одновременно точно измерить эти динамические переменные, причем это связано не с воздействием измерительных приборов или их несовершенством. Соотношение неопределенностей отражает объективные свойства микромира, проистекая из его корпускулярно-волнового дуализма.

То обстоятельство, что один и тот же объект проявляет себя и как частица, и как волна разрушает традиционные представления, лишает описание процессов привычной наглядности. Понятие частицы подразумевает объект, заключенный в малую область пространства, волна же распространяется в его протяженных областях. Представить себе объект, обладающий одновременно этими качествами невозможно, да и не следует пытаться. Невозможно построить наглядную для человеческого мышления модель, которая была бы адекватна микромиру. Уравнения квантовой механики, впрочем, и не ставят такой цели. Их смысл состоит в математически адекватном описании свойств объектов микромира и происходящих с ними процессов.

Если говорить о связи квантовой механики с механикой классической, то соотношение неопределенностей является квантовым ограничением применимости классической механики к объектам микромира . Строго говоря, соотношение неопределенностей распространяется на любую физическую систему, однако, поскольку волновая природа макрообъектов практически не проявляется, координаты и импульс таких объектов можно одновременно измерить с достаточно высокой точностью. Это означает, что для описания их движения вполне достаточно использовать законы классической механики. Вспомним, что аналогичным образом обстоит дело в релятивистской механике (специальной теории относительности): при скоростях движения, значительно меньших скорости света, релятивистские поправки становятся несущественными и преобразования Лоренца переходят в преобразования Галилея.

Итак, соотношение неопределенностей для координат и импульса отражает корпускулярно-волновой дуализм микромира и не связано с воздействием измерительных приборов . Несколько другой смысл имеет аналогичное соотношение неопределенностей дляэнергии Е ивремени t :

E t h.

Из него следует, что энергию системы можно измерить лишь с точностью, не превышающей h /∆ t, где t – длительность измерения.Причина такой неопределенности состоит уже в самом процессе взаимодей ствия системы (микрообъекта) с измерительным прибором . Для стационарной ситуации приведенное неравенство означает, что энергия взаимодействия между измерительным прибором и системой может быть учтена только с точностью доh /∆t . В предельном же случае мгновенного измерения происходящий обмен энергией оказывается полностью неопределенным.

Если под Е понимается неопределенность значения энергии нестационарного состояния, то тогдаt есть характерное время, в течение которого значения физических величин в системе изменяются существенным образом. Отсюда, в частности, следует важный вывод относительно возбужденных состояний атомов и других микросистем: энергия возбужденного уровня не может быть строго определена, что говорит о наличииестественной ширины этого уровня.

Объективные свойства квантовых систем отражает еще одно принципиальное положение квантовой механики – принцип дополнительности Бора , согласно которомуполучение любым экспериментальным путем информации об одних физических величинах, описывающих микрообъект, неизбежно связано с потерей информации о некоторых других величинах, дополнительных к первым .

Взаимно дополнительными являются, в частности, координата частицы и ее импульс (см. выше – принцип неопределенности), кинетическая и потенциальная энергия, напряженность электрического поля и количество фотонов.

Рассмотренные фундаментальные принципы квантовой механики свидетельствуют о том, что, в силу корпускулярно-волнового дуализма изучаемого ею микромира, ей чужд детерминизм классической физики. Полный уход от наглядного моделирования процессов придает особый интерес вопросу о том, какова же физическая природа волн де Бройля. В ответе на этот вопрос принято «отталкиваться» от поведения фотонов. Известно, что при пропускании светового пучка через полупрозрачную пластину S часть света проходит сквозь нее, а часть отражается (рис. 4).

Рис. 4

Что же при этом происходит с отдельными фотонами? Эксперименты со световыми пучками очень малой интенсивности с использованием современной техники (А – детектор фотонов), позволяющей следить за поведением каждого фотона (так называемый режим счета фотонов), показывают, что о расщеплении отдельного фотона не может быть и речи (иначе свет изменял бы свою частоту). Достоверно установлено, что некоторые фотоны проходят сквозь пластину, а некоторые отражаются от нее. Это означает, чтоодинаковые частицы в одинаковых условиях могут вести себя по-разному ,т. е. поведение отдельного фотона при встрече с поверхностью пластины не может быть предсказано однозначно .

Отражение фотона от пластины или прохождение сквозь нее суть случайные события. А количественные закономерности таких событий описываются с помощью теории вероятностей. Фотон может с вероятностью w 1 пройти сквозь пластину и с вероятностьюw 2 отразиться от нее. Вероятность того, что с фотоном произойдет одно из этих двух альтернативных событий, равна сумме вероятностей:w 1 + w 2 = 1.

Аналогичные эксперименты с пучком электронов или других микрочастиц также показывают вероятностный характер поведения отдельных частиц. Таким образом, задачу квантовой механики можно сформулировать как предсказание вероятности процессов в микромире , в отличие от задачи классической механики– предсказывать достоверность событий в макромире .

Известно, однако, что вероятностное описание применяется и в классической статистической физике. Так в чем же принципиальная разница? Для ответа на этот вопрос усложним опыт по отражению света. С помощью зеркала S 2 развернем отраженный пучок, поместив детекторA , регистрирующий фотоны в зоне его пресечения с прошедшим пучком, т. е. обеспечим условия интерференционного эксперимента (рис. 5).

Рис. 5

В результате интерференции интенсивность света в зависимости от расположения зеркала и детектора будет периодически меняться по поперечному сечению области перекрытия пучков в широких пределах (в том числе обращаться в ноль). Как же ведут себя отдельные фотоны в этом опыте? Оказывается, что в этом случае два оптических пути к детектору уже не являются альтернативными (взаимоисключающими) и поэтому нельзя сказать, каким путем прошел фотон от источника к детектору. Приходится допускать, что он мог попасть в детектор одновременно двумя путями, образуя в итоге интерференционную картину. Опыт с другими микрочастицами дает аналогичный результат: последовательно проходящие частицы создают такую же картину, как и поток фотонов.

Вот это уже кардинальное отличие от классических представлений: ведь невозможно представить себе движение частицы одновременно по двум разным путям. Впрочем, такой задачи квантовая механика и не ставит. Она предсказывает результат, состоящий в том, что светлым полосам соответствует высокая вероятность появления фотона.

Волновая оптика легко объясняет результат интерференционного опыта с помощью принципа суперпозиции, в соответствии с которым световые волны складываются с учетом соотношения их фаз. Иными словами, волны вначале складываются по амплитуде с учетом разности фаз, образуется периодическое распределение амплитуды, а затем уже детектор регистрирует соответствующую интенсивность (что соответствует математической операции возведения в квадрат по модулю, т. е. происходит потеря информации о распределении фазы). При этом распределение интенсивности носит периодический характер:

I = I 1 + I 2 + 2 A 1 A 2 cos (φ 1 – φ 2 ),

где А , φ , I = | A | 2 амплитуда ,фаза иинтенсивность волн соответственно, а индексы 1, 2 указывают на их принадлежность к первой или второй из этих волн. Ясно, что приА 1 = А 2 иcos (φ 1 φ 2 ) = – 1 значение интенсивностиI = 0 , что соответствует взаимному гашению световых волн (при их суперпозиции и взаимодействии по амплитуде).

Для интерпретации волновых явлений с корпускулярной точки зрения принцип суперпозиции переносится в квантовую механику, т. е. вводится понятие амплитуды вероятности – по аналогии с оптическими волнами:Ψ = А exp ( ). При этом имеется в виду, что вероятность есть квадрат этой величины (по модулю) т. е.W = |Ψ| 2 .Амплитуда вероятности называется в квантовой механикеволновой функцией . Это понятие ввел в 1926 г. немецкий физик М. Борн, дав тем самымвероятностную интерпретацию волн де Бройля. Удовлетворение принципу суперпозиции означает, что еслиΨ 1 и Ψ 2 – амплитуды вероятности прохождения частицы первым и вторым путями, то амплитуда вероятности при прохождении обоих путей должна быть:Ψ = Ψ 1 + Ψ 2 . Тогда формально утверждение о том, что «частица прошла двумя путями», приобретает волновой смысл, а вероятностьW = |Ψ 1 + Ψ 2 | 2 проявляет свойствоинтерференционного распределения .

Таким образом, величиной, описывающей состояние физической системы в квантовой механике, является волновая функция системы в предположении о справедливости принципа суперпозиции . Относительно волновой функции и записано основное уравнение волновой механики – уравнение Шрёдингера. Поэтому одна из основных задач квантовой механики состоит в нахождении волновой функции, отвечающей данному состоянию исследуемой системы.

Существенно, что описание состояния частицы с помощью волновой функции носит вероятностный характер, поскольку квадрат модуля волновой функции определяет вероятность нахождения частицы в данный момент времени в определенном ограниченном объеме . Этим квантовая теория фундаментально отличается от классической физики с ее детерминизмом.

В свое время именно высокой точности предсказания поведения макрообъектов была обязана своим триумфальным шествием классическая механика. Естественно, в среде ученых долгое время бытовало мнение, что прогресс физики и науки вообще будет неотъемлемо связан с возрастанием точности и достоверности такого рода предсказаний. Принцип неопределенности и вероятностный характер описания микросистем в квантовой механике коренным образом изменили эту точку зрения.

Тогда стали появляться другие крайности. Поскольку из принципа неопределенности следует невозможность одновременного определения координаты и импульса , можно сделать вывод о том, что состояние системы в начальный момент времени точно не определено и, следовательно, не могут быть предсказаны последующие состояния, т. е. нарушаетсяпринцип причинности .

Однако подобное утверждение возможно только при классическом взгляде на неклассическую реальность. В квантовой механике состояние частицы полностью определяется волновой функцией. Ее значение, заданное для определенного момента времени, определяет последующие ее значения. Поскольку причинность выступает как одно из проявлений детерминизма, целесообразно в случае квантовой механики говорить о вероятностном детерминизме, опирающемся на статистические законы, т. е. обеспечивающем тем более высокую точность, чем больше зафиксировано однотипных событий. Поэтому современная концепция детерминизма предполагает органическое сочетание, диалектическое единство необходимости ислучайности .

Развитие квантовой механики оказало, таким образом, заметное влияние на прогресс философской мысли. С гносеологической точки зрения особый интерес представляет уже упоминавшийся принцип соответствия , сформулированный Н. Бором в 1923 г., согласно которомувсякая новая, более общая теория, являющаяся развитием классической, не отвергает ее полностью, а включает в себя классическую теорию, указывая границы ее применимости и переходя в нее в определенных предельных случаях .

Нетрудно убедиться, что принцип соответствия прекрасно иллюстрирует взаимоотношение классической механики и электродинамики с теорией относительности и квантовой механикой.

Наверняка Вы много раз слышали о необъяснимых тайнах квантовой физики и квантовой механики . Её законы завораживают мистикой, и даже сами физики признаются, что до конца не понимают их. С одной стороны, любопытно понять эти законы, но с другой стороны, нет времени читать многотомные и сложные книги по физике. Я очень понимаю Вас, потому что тоже люблю познание и поиск истины, но времени на все книги катастрофически не хватает. Вы не одиноки, очень многие любознательные люди набирают в поисковой строке: «квантовая физика для чайников, квантовая механика для чайников, квантовая физика для начинающих, квантовая механика для начинающих, основы квантовой физики, основы квантовой механики, квантовая физика для детей, что такое квантовая механика». Именно для Вас эта публикация .

Вам станут понятны основные понятия и парадоксы квантовой физики. Из статьи Вы узнаете:

  • Что такое квантовая физика и квантовая механика?
  • Что такое интерференция?
  • Что такое квантовая запутанность (или Квантовая телепортация для чайников)? (см. статью )
  • Что такое мысленный эксперимент «Кот Шредингера»? (см. статью )

Квантовая механика — это часть квантовой физики.

Почему же так сложно понять эти науки? Ответ прост: квантовая физика и квантовая механика (часть квантовой физики) изучают законы микромира. И законы эти абсолютно отличаются от законов нашего макромира. Поэтому нам трудно представить то, что происходит с электронами и фотонами в микромире.

Пример отличия законов макро- и микромиров : в нашем макромире, если Вы положите шар в одну из 2-х коробок, то в одной из них будет пусто, а в другой - шар. Но в микромире (если вместо шара - атом), атом может находиться одновременно в двух коробках. Это многократно подтверждено экспериментально. Не правда ли, трудно это вместить в голове? Но с фактами не поспоришь.

Ещё один пример. Вы сфотографировали быстро мчащуюся красную спортивную машину и на фото увидели размытую горизонтальную полосу, как будто-машина в момент фото находилась с нескольких точках пространства. Несмотря на то, что Вы видите на фото, Вы всё равно уверены, что машина в ту секунду, когда Вы ёё фотографировали находилась в одном конкретном месте в пространстве . В микро же мире всё не так. Электрон, который вращается вокруг ядра атома, на самом деле не вращается, а находится одновременно во всех точках сферы вокруг ядра атома. Наподобие намотанного неплотно клубка пушистой шерсти. Это понятие в физике называется «электронным облаком» .

Небольшой экскурс в историю. Впервые о квантовом мире учёные задумались, когда в 1900 году немецкий физик Макс Планк попытался выяснить, почему при нагревании металлы меняют цвет. Именно он ввёл понятие кванта. До этого учёные думали, что свет распространяется непрерывно. Первым, кто серьёзно воспринял открытие Планка, был никому тогда неизвестный Альберт Энштейн. Он понял, что свет – это не только волна. Иногда он ведёт себя, как частица. Энштейн получил Нобелевскую премию за своё открытие, что свет излучается порциями, квантами. Квант света называется фотоном (фотон, Википедия ) .

Для того, чтобы легче было понять законы квантовой физики и механики (Википедия) , надо в некотором смысле абстрагироваться от привычных нам законов классической физики. И представить, что Вы занырнули, как Алиса, в кроличью нору, в Страну чудес.

А вот и мультик для детей и взрослых. Рассказывает о фундаментальном эксперименте квантовой механики с 2-мя щелями и наблюдателем. Длится всего 5 минут. Посмотрите его перед тем, как мы углубимся в основные вопросы и понятия квантовой физики.

Квантовая физика для чайников видео . В мультике обратите внимание на «глаз» наблюдателя. Он стал серьёзной загадкой для учёных-физиков.

Что такое интерференция?

В начале мультика было показано на примере жидкости, как ведут себя волны – на экране за пластиной со щелями появляются чередующиеся тёмные и светлые вертикальные полосы. А в случае, когда в пластину «стреляют» дискретными частицами (например, камушками), то они пролетают сквозь 2 щели и попадают на экран прямо напротив щелей. И «рисуют» на экране только 2 вертикальные полосы.

Интерференция света – это «волновое» поведение света, когда на экране отображается много чередующихся ярких и тёмных вертикальных полос. Еще эти вертикальные полосы называются интерференционной картиной .

В нашем макромире мы часто наблюдаем, что свет ведёт себя, как волна. Если поставить руку напротив свечи, то на стене будет не чёткая тень от руки, а с расплывающимися контурами.

Итак, не так уж всё и сложно! Нам сейчас вполне понятно, что свет имеет волновую природу и если 2 щели освещать светом, то на экране за ними мы увидим интерференционную картину. Теперь рассмотрим 2-й эксперимент. Это знаменитый эксперимент Штерна-Герлаха (который провели в 20-х годах прошлого века).

В установку, описанную в мультике, не светом светили, а «стреляли» электронами (как отдельными частицами). Тогда, в начале прошлого века, физики всего мира считали, что электроны – это элементарные частицы материи и должны иметь не волновую природу, а такую же, как камушки. Ведь электроны – это элементарные частицы материи, правильно? То есть, если ими «бросать» в 2 щели, как камушками, то на экране за прорезями мы должны увидеть 2 вертикальные полоски.

Но… Результат был ошеломляющий. Учёные увидели интерференционную картину – много вертикальных полосок. То есть электроны, как и свет тоже могут иметь волновую природу, могут интерферировать. А с другой стороны стало понятно, что свет не только волна, но немного и частица — фотон (из исторической справки в начале статьи мы узнали, что за это открытие Энштейн получил Нобелевскую премию).

Может помните, в школе нам рассказывали на физике про «корпускулярно-волновой дуализм» ? Он означает, что когда речь идет об очень маленьких частицах (атомах, электронах) микромира, то они одновременно и волны, и частицы

Это сегодня мы с Вами такие умные и понимаем, что 2 выше описанных эксперимента – стрельба электронами и освещение щелей светом – суть одно и тоже. Потому что мы стреляем по прорезям квантовыми частицами. Сейчас мы знаем, что и свет, и электроны имеют квантовую природу, являются и волнами, и частицами одновременно. А в начале 20-го века результаты этого эксперимента были сенсацией.

Внимание! Теперь перейдём к более тонкому вопросу.

Мы светим на наши щели потоком фотонов (электронов) – и видим за щелями на экране интерференционную картину (вертикальные полоски). Это ясно. Но нам интересно увидеть, как пролетает каждый из электронов в прорези.

Предположительно, один электрон летит в левую прорезь, другой – в правую. Но тогда должны на экране появиться 2 вертикальные полоски прямо напротив прорезей. Почему же получается интерференционная картина? Может электроны как-то взаимодействуют между собой уже на экране после пролёта через щели. И в результате получается такая волновая картина. Как нам за этим проследить?

Будем бросать электроны не пучком, а по одному. Бросим, подождём, бросим следующий. Теперь, когда электрон летит один, он уже не сможет взаимодействовать на экране с другими электронами. Будем регистрировать на экране каждый электрон после броска. Один-два конечно не «нарисуют» нам понятной картины. Но когда по одному отправим в прорези их много, то заметим…о ужас – они опять «нарисовали» интерференционную волновую картину!

Начинаем медленно сходить с ума. Ведь мы ожидали, что будет 2 вертикальные полоски напротив щелей! Получается, что когда мы бросали фотоны по одному, каждый из них проходил, как бы через 2 щели одновременно и интерферировал сам с собой. Фантастика! Вернёмся к пояснению этого феномена в следующем разделе.

Что такое спин и суперпозиция?

Мы теперь знаем, что такое интерференция. Это волновое поведение микро частиц – фотонов, электронов, других микро частиц (давайте для простоты с этого момента называть их фотонами).

В результате эксперимента, когда мы бросали в 2 щели по 1 фотону, мы поняли, что он пролетает как будто через две щели одновременно. Иначе как объяснить интерференционную картину на экране?

Но как представить картину, что фотон пролетает сквозь две щели одновременно? Есть 2 варианта.

  • 1-й вариант: фотон, как волна (как вода) «проплывает» сквозь 2 щели одновременно
  • 2-й вариант: фотон, как частица, летит одновременно по 2-м траекториям (даже не по двум, а по всем сразу)

В принципе, эти утверждения равносильны. Мы пришли к «интегралу по траекториям». Это формулировка квантовой механики от Ричарда Фейнмана.

Кстати, именно Ричарду Фейнману принадлежит известное выражение, что уверенно можно утверждать, что квантовую механику не понимает никто

Но это его выражение работало в начале века. Но мы то теперь умные и знаем, что фотон может вести себя и как частица, и как волна. Что он может каким-то непонятным для нас способом пролетать одновременно через 2 щели. Поэтому нам легко будет понять следующее важное утверждение квантовой механики:

Строго говоря, квантовая механика говорит нам, что такое поведение фотона – правило, а не исключение. Любая квантовая частица находится, как правило, в нескольких состояниях или в нескольких точках пространства одновременно .

Объекты макромира могут находится только в одном определенном месте и в одном определенном состоянии. Но квантовая частица существует по своим законам. И ей и дела нет до того, что мы их не понимаем. На этом — точка.

Нам остаётся просто признать, как аксиому, что «суперпозиция» квантового объекта означает то, что он может находится на 2-х или более траекториях одновременно, в 2-х или более точках одновременно

То же относится и к другому параметру фотона – спину (его собственному угловому моменту). Спин — это вектор. Квантовый объект можно представить как микроскопический магнитик. Мы привыкли, что вектор магнита (спин) либо направлен вверх, либо вниз. Но электрон или фотон опять говорят нам: «Ребята, нам плевать, к чему Вы привыкли, мы можем быть в обоих состояниях спина сразу (вектор вверх, вектор вниз), точно так же, как мы можем находиться на 2-х траекториях одновременно или в 2-х точках одновременно!».

Что такое «измерение» или «коллапс волновой функции»?

Нам осталось немного — понять ещё, что такое «измерение» и что такое «коллапс волновой функции».

Волновая функция — это описание состояния квантового объекта (нашего фотона или электрона).

Предположим, у нас есть электрон, он летит себе в неопределённом состоянии, спин его направлен и вверх, и вниз одновременно . Нам надо измерить его состояние.

Измерим при помощи магнитного поля: электроны, у которых спин был направлен по направлению поля, отклонятся в одну сторону, а электроны, у которых спин направлен против поля — в другую. Ещё фотоны можно направлять в поляризационный фильтр. Если спин (поляризация) фотона +1 – он проходит через фильтр, а если -1, то нет.

Стоп! Вот тут у Вас неизбежно возникнет вопрос: до измерения ведь у электрона не было какого-то конкретного направления спина, так? Он ведь был во всех состояниях одновременно?

В этом-то и заключается фишка и сенсация квантовой механики . Пока Вы не измеряете состояние квантового объекта, он может вращаться в любую сторону (иметь любое направление вектора собственного углового момента – спина). Но в момент, когда Вы измерили его состояние, он как будто принимает решение, какой вектор спина ему принять.

Вот такой крутой этот квантовый объект – сам принимает решение о своём состоянии. И мы не можем заранее предсказать, какое решение он примет, когда влетит в магнитное поле, в котором мы его измеряем. Вероятность того, что он решит иметь вектор спина «вверх» или «вниз» – 50 на 50%. Но как только он решил – он находится в определённом состоянии с конкретным направлением спина. Причиной его решения является наше «измерение»!

Это и называется «коллапсом волновой функции» . Волновая функция до измерения была неопределённой, т.е. вектор спина электрона находился одновременно во всех направлениях, после измерения электрон зафиксировал определённое направление вектора своего спина.

Внимание! Отличный для понимания пример-ассоциация из нашего макромира:

Раскрутите на столе монетку, как юлу. Пока монетка крутиться, у нёё нет конкретного значения — орёл или решка. Но как только Вы решите «измерить» это значение и прихлопните монету рукой, вот тут-то и получите конкретное состояние монеты – орёл или решка. А теперь представьте, что это монета принимает решение, какое значение Вам «показать» – орёл или решка. Примерно также ведёт себя и электрон.

А теперь вспомните эксперимент, показанный в конце мультика. Когда фотоны пропускали через щели, они вели себя, как волна и показывали на экране интерференционную картину. А когда учёные захотели зафиксировать (измерить) момент пролёта фотонов через щель и поставили за экраном «наблюдателя», фотоны стали вести себя, не как волны, а как частицы. И «нарисовали» на экране 2 вертикальные полосы. Т.е. в момент измерения или наблюдения квантовые объекты сами выбирают, в каком состоянии им быть.

Фантастика! Не правда ли?

Но это ещё не всё. Наконец-то мы добрались до самого интересного.

Но… мне кажется, что получится перегруз информации, поэтому 2 эти понятия мы рассмотрим в отдельных постах:

  • Что такое ?
  • Что такое мысленный эксперимент .

А сейчас, хотите, чтобы информация разложилась по полочкам? Посмотрите документальный фильм, подготовленный Канадским институтом теоретической физики. В нём за 20 минут очень кратко и в хронологическом порядке Вам поведают о всех открытиях квантовой физики, начиная с открытия Планка в 1900 году. А затем расскажут, какие практические разработки выполняются сейчас на базе знаний по квантовой физике: от точнейших атомных часов до суперскоростных вычислений квантового компьютера. Очень рекомендую посмотреть этот фильм.

До встречи!

Желаю всем вдохновения для всех задуманных планов и проектов!

P.S.2 Пишите Ваши вопросы и мысли в комментариях. Пишите, какие ещё вопросы по квантовой физике Вам интересны?

P.S.3 Подписывайтесь на блог - форма для подписки под статьёй.

ОСНОВНЫЕ ПРИНЦИПЫ КВАНТОВОЙ МЕХАНИКИ.

Наименование параметра Значение
Тема статьи: ОСНОВНЫЕ ПРИНЦИПЫ КВАНТОВОЙ МЕХАНИКИ.
Рубрика (тематическая категория) Механика

В 1900 ᴦ. немецкий физик Макс Планк предположил, что излучение и поглощение света веществом происходит конечными порциями – квантами, причем энергия каждого кванта пропорциональна частоте испускаемого излучения:

где - частота испускаемого (или поглощаемого) излучения, а h – универсальная постоянная, называемая постоянной Планка. По современным данным

h = (6,62618 0,00004)∙ 10 -34 Дж∙с.

Гипотеза Планка явилась отправным пунктом возникновения квантовых представлений, положенных в основу принципиально новой физики – физики микромира, называемой квантовой физикой. Огромную роль в ее становлении сыграли глубокие идеи датского физика Нильса Бора и его школы. В корне квантовой механики лежит непротиворечивый синтез корпускулярных и волновых свойств материи. Волна – весьма протяженный в пространстве процесс (вспомните волны на воде), а частица - ϶ᴛᴏ намного более локальный, чем волна, объект. Свет при определœенных условиях ведет себя не как волна, а как поток частиц. В то же время элементарные частицы обнаруживают подчас волновые свойства. В рамках классической теории невозможно объединить волновые и корпускулярные свойства. По этой причине создание новой теории, описывающей закономерности микромира, привело к отказу от обычных представлений, справедливых для макроскопических объектов.

С квантовой точки зрения и свет, и частицы представляют из себясложные объекты, обнаруживающие как волновые, так и корпускулярные свойства (так называемый корпускулярно-волновой дуализм). Создание квантовой физики было стимулировано попытками осмыслить строение атома и закономерности спектров излучения атомов.

В конце 19 века было обнаружено, что при падении света на поверхность металла, из последней испускаются электроны. Это явление назвали фотоэффектом.

В 1905 ᴦ. Эйнштейн объяснил фотоэффект на базе квантовой теории. Он ввел предположение о том, что энергия в пучке монохроматического света состоит из порций, величина которых равна h . Физическая размерность величины h равна время∙энергия=длина∙импульс=момент количества движения. Такой размерностью обладает величина, называемая действием, и в связи с этим h называют элементарным квантом действия. Согласно Эйнштейну, электрон в металле, поглотив такую порцию энергии, совершает работу выхода из металла и приобретает кинœетическую энергию

Е к =h − А вых.

Это уравнение Эйнштейна для фотоэффекта.

Дискретные порции света позже (в 1927 ᴦ.) были названы фотонами .

В науке при определœении математического аппарата всœегда следует исходить из характера наблюдаемых экспериментальных явлений. Немецкий физик Шредингер добился грандиозных достижений, попробовав другую стратегию научного поиска: сначала математика, а затем понимание ее физического смысла и в результате интерпретация природы квантовых явлений.

Было ясно, что уравнения квантовой механики должны быть волновыми (ведь квантовые объекты обладают волновыми свойствами). Эти уравнения должны иметь дискретные решения (квантовым явлениям присущи элементы дискретности). Такого рода уравнения были известны в математике. Ориентируясь на них, Шредингер предложил использовать понятие волновой функции ʼʼψʼʼ. Для частицы, свободно движущейся вдоль оси Х, волновая функция ψ=е - i|h(Et-px) , где р - импульс, х - координата͵ Е-энергия, h-постоянная Планка. Функция ʼʼψʼʼ принято называть волновой потому, что для ее описания используется экспоненциальная функция.

Состояние частицы в квантовой механике описывается волновой функцией, позволяющей определить лишь вероятность нахождения частицы в данной точке пространства. Волновая функция описывает не сам объект и даже не его потенциальные возможности. Операции с волновой функцией позволяют вычислить вероятности квантово-механических событий.

Основополагающими принципами квантовой физики являются принципы суперпозиции, неопределœенности, дополнительности и тождественности.

Принцип суперпозиции в классической физике позволяет получить результирующий эффект от наложения (суперпозиции) нескольких независимых воздействий как сумму эффектов, вызываемых каждым воздействие в отдельности. Он справедлив для систем или полей, описываемых линœейными уравнениями. Этот принцип очень важен в механике, теории колебаний и волновой теории физических полей. В квантовой механике принцип суперпозиции относится к волновым функциям: если физическая система может находиться в состояниях, описываемых двумя или несколькими волновыми функциями ψ 1, ψ 2 ,…ψ ń , то она может находиться в состоянии, описываемом любой линœейной комбинацией этих функций:

Ψ=c 1 ψ 1 +c 2 ψ 2 +….+с n ψ n ,

где с 1 , с 2 ,…с n – произвольные комплексные числа.

Принцип суперпозиции является уточнением соответствующих представлений классической физики. Согласно последней, в среде, не меняющей свои свойства под действием возмущений, волны распространяются независимо друг от друга. Следовательно, результирующее возмущение в какой-либо точке среды при распространении в ней нескольких волн равно сумме возмущений, соответствующих каждой из этих волн:

S = S 1 +S 2 +….+S n ,

где S 1 , S 2,….. S n – возмущения, вызываемые волной. В случае негармонической волны ее можно представить как сумму гармонических волн.

Принцип неопределœенности состоит в том, что невозможно одновременно определить две характеристики микрочастицы, к примеру, скорости и координаты. Он отражает двойственную корпускулярно-волновую природу элементарных частиц. Погрешности, неточности, ошибки при одновременном определœении в эксперименте дополнительных величин связаны соотношением неопределœенностей, установленным в 1925ᴦ. Вернером Гейзенбергом. Соотношение неопределœенностей состоит в том, что произведение неточностей любых пар дополнительных величин (к примеру, координаты и проекции импульса на нее, энергии и времени) определяется постоянной Планка h. Соотношения неопределœенностей свидетельствуют о том, что чем определœеннее значение одного из параметров, входящих в соотношения, тем неопределœеннее значение другого параметра и наоборот. Имеется в виду, что параметры измеряются одновременно.

Классическая физика приучила к тому, что всœе параметры объектов и происходящих с ними процессов бывают измерены одновременно с какой угодно точностью. Это положение опровергается квантовой механикой.

Датский физик Нильс Бор пришел к выводу, что квантовые объекты относительны к средствам наблюдения. О параметрах квантовых явлений можно судить лишь после их взаимодействия со средствами наблюдения, ᴛ.ᴇ. с приборами. Поведение атомных объектов невозможно резко отграничить от их взаимодействия с измерительными приборами, фиксирующими условия, при которых происходят эти явления. При этом приходится учитывать, что приборы, которые используются для измерения параметров, разнотипны. Данные, полученные при разных условиях опыта͵ должны рассматриваться как дополнительные в том смысле, что только совокупность разных измерений может дать полное представление о свойствах объекта. В этом и состоит содержание принципа дополнительности.

В классической физике измерение считалось не возмущающим объект исследования. Измерение оставляет объект неизменным. Согласно квантовой механике, каждое отдельно проведенное измерение разрушает микрообъект. Чтобы провести новое измерение, приходится заново готовить микрообъект. Это усложняет процесс синтеза измерений. В этой связи Бор утверждает взаимодополнительность квантовых измерений. Данные классических измерений не взаимодополнительны, они имеют самостоятельный смысл независимо друг от друга. Взаимодополнение имеет место там, где исследуемые объекты неотличимы друг от друга и взаимосвязаны между собой.

Бор соотносил принцип дополнительности не только с физическими науками: ʼʼцельность живых организмов и характеристики людей, обладающих сознанием, а также и человеческих культур представляют черты целостности, отображение которых требует типично дополнительного способа описанияʼʼ. По мысли Бора, возможности живых существ столь многообразны и так тесно взаимосвязаны, что при их изучении вновь приходится обращаться к процедуре взаимодополнения данных наблюдений. При этом, эта мысль Бора не получила должного развития.

Особенности и специфика взаимодействий между компонентами сложных микро- и макросистем. а также внешних взаимодействий между ними приводит к громадному их многообразию. Для микро- и макросистем характерна индивидуальность, каждая система описывается присущей только ей совокупностью всœевозможных свойств. Можно назвать различия между ядром водорода и урана, хотя оба относятся к микросистемам. Не меньше различий между Землей и Марсом, хотя эти планеты принадлежат одной и той же Солнечной системы.

При этом можно говорить о тождественности элементарных частиц. Тождественные частицы обладают одинаковыми физическими свойствами: массой, электрическим зарядом и другими внутренними характеристиками. К примеру, всœе электроны Вселœенной считаются тождественными. Тождественные частицы подчиняются принципу тождественности – фундаментальному принципу квантовой механики, согласно которому: состояния системы частиц, получающихся друг из друга перестановкой тождественных частиц местами, нельзя различить ни в каком эксперименте.

Этот принцип – основное различие между классической и квантовой механикой. В квантовой механике тождественные частицы лишены индивидуальности.

СТРОЕНИЕ АТОМА И АТОМНОГО ЯДРА. ЭЛЕМЕНТАРНЫЕ ЧАСТИЦЫ.

Первые представления о строении вещества возникли в Древней Греции в 6-4 в.в. до н.э. Аристотель считал вещество непрерывным, ᴛ.ᴇ. его можно дробить на сколько угодно малые части, но так и не дойти до мельчайшей частицы, которая дальше не делилась бы. Демокрит считал, что всœе в мире состоит из атомов и пустоты. Атомы – мельчайшие частицы вещества, значит ʼʼнеделимыеʼʼ, и в представлении Демокрита атомы это сферы с зубчатой поверхностью.

Такое мировоззрение существовало вплоть до конца 19 века. В 1897ᴦ. Джозеф Джон Томсон (1856-1940ᴦ.ᴦ.), родной сын У.Томсона, дважды лауреат Нобелœевской премии открыл элементарную частицу, которая была названа электроном. Было установлено, что электрон вылетает из атомов и имеет отрицательный электрический заряд. Величина заряда электрона е =1,6.10 -19 Кл (Кулон), масса электрона m =9,11.10 -31 кᴦ.

После открытия электрона Томсон в 1903 году выдвинул гипотезу о том, что атом представляет собой сферу, по которой размазан положительный заряд, и в виде изюминок вкраплены электроны с отрицательными зарядами. Положительный заряд равен отрицательному, в целом атом электрически нейтрален (суммарный заряд равен 0).

В 1911 году проводя опыт, Эрнст Резерфорд установил, что положительный заряд не размазан по объёму атома, а занимает лишь небольшую его часть. После этого им была выдвинута модель атома, которая впоследствии получила название планетарной. Согласно этой модели атом действительно представляет собой сферу, в центре которой расположен положительный заряд, занимая малую часть этой сферы – порядка 10 -13 см. Отрицательный заряд находится на внешней, так называемой электронной оболочке.

Более совершенную квантовую модель атома предложил датский физик Н.Бор в 1913 году, работавший в лаборатории Резерфорда. Он взял за основу модель атома Резерфорда и дополнил ее новыми гипотезами, которые противоречат классическим представлениям. Эти гипотезы известны как постулаты Бора. Οʜᴎ сводятся к следующему.

1. Каждый электрон в атоме может совершать устойчивое орбитальное движение по определœенной орбите, с определœенным значением энергии, не испуская и не поглощая электромагнитного излучения. В этих состояниях атомные системы обладают энергиями, образующими дискретный ряд: Е 1 , Е 2 ,…Е n . Всякое изменение энергии в результате испускания или поглощения электромагнитного излучения может происходить скачком из одного состояния в другое.

2. При переходе электрона с одной стационарной орбиты на другую, происходит испускание или поглощение энергии. В случае если при переходе электрона с одной орбиты на другую энергия атома изменяется от Е m до Е n , то hv = Е m - Е n , где v – частота излучения.

Эти постулаты Бор использовал для расчета простейшего атома водорода,

Область, в которой сосредоточен положительный заряд, принято называть ядром. Было предположение, что ядро состоит из положительных элементарных частиц. Эти частицы, названные протонами (в переводе с греческого протон означает первый), были обнаружены Резерфордом в 1919 году. Их заряд по модулю равен заряду электрона (но положительный), масса протона равна 1,6724.10 -27 кᴦ. Существование протона было подтверждено в результате проведения искусственной ядерной реакции превращения азота в кислород. Атомы азота облучались ядрами гелия. В результате получался кислород и протон. Протон это стабильная частица.

В 1932 году Джеймсом Чадвиком была открыта частица, которая не имела электрического заряда и обладала массой, почти равной массе протона. Эта частица была названа нейтроном. Масса нейтрона равна 1,675.10 -27 кᴦ. Нейтрон был открыт в результате облучения α-частицами пластинки из бериллия. Нейтрон является нестабильной частицей. Отсутствие заряда объясняет его легкую способность проникать в ядра атомов.

Открытие протона и нейтрона привело к созданию протонно-нейтронной модели атома. Она была предложена в 1932 году советскими физиками Иваненко, Гапоном и немецким физиком Гейзенбергом. Согласно этой модели ядро атома состоит из протонов и нейтронов, за исключением ядра водорода, ĸᴏᴛᴏᴩᴏᴇ состоит из одного протона.

Заряд ядра определяется количеством в нем протонов и обозначается символом Z . Вся масса атома заключена в массе его ядра и определяется массой входящих в него протонов и нейтронов, поскольку масса электрона ничтожно мала по сравнению с массами протона и нейтрона. Порядковый номер в периодической таблице Менделœеева соответствует заряду ядра данного химического элемента. Массовое число атома А равно массе нейтронов и протонов: А=Z+N , где Z – количество протонов, N – количество нейтронов. Условно любой элемент обозначается символом: А Х z .

Существуют ядра, которые содержат одинаковое число протонов, но разное число нейтронов, ᴛ.ᴇ. отличающиеся массовым числом. Такие ядра называются изотопами. К примеру, 1 Н 1 - обычный водород, 2 Н 1 - дейтерий, 3 Н 1 - тритий. Наибольшей устойчивостью обладают ядра, в которых число протонов равно числу нейтронов или тех и других одновременно = 2, 8, 20, 28, 50, 82, 126 – магические числа.

Размеры атома приблизительно 10 -8 см. Атом состоит из ядра размером в 10-13 см. Между ядром атома и границей атома находится огромное пространство по масштабам в микромире. Плотность в ядре атома огромна, приблизительно 1,5·108 т/см 3 . Химические элементы с массой А<50 называются легкими, а с А>50 – тяжелыми. В ядрах тяжелых элементов тесновато, ᴛ.ᴇ. создается энергетическая предпосылка для их радиоактивного распада.

Энергия, необходимая для расщепления ядра на составляющие его нуклоны, называют энергией связи. (Нуклоны – обобщенное название протонов и нейтронов и в переводе на русский язык означает ʼʼядерные частицыʼʼ):

Е св = Δm∙с 2 ,

где Δm – дефект массы ядра (разница между массами нуклонов, образующих ядро, и массой ядра).

В 1928ᴦ. физиком-теоретиком Дираком была предложена теория электрона. Элементарные частицы могут вести себя подобно волне – они обладают корпускулярно-волновым дуализмом. Теория Дирака дала возможность определить, когда электрон ведет себя как волна, а когда – как частица. Он заключил, что должна существовать элементарная частица, обладающая такими же свойствами, как и электрон, но с положительным зарядом. Такая частица позже была обнаружена в 1932 году и названа позитроном. Американский физик Андерсен на фотографии космических лучей обнаружил след частицы, аналогичный электрону, но с положительным зарядом.

Из теории следовало, что электрон и позитрон, взаимодействуя между собой (реакция аннигиляции), образуют пару фотонов, ᴛ.ᴇ. квантов электромагнитного излучения. Возможен и обратный процесс, когда фотон, взаимодействуя с ядром, превращается в пару электрон – позитрон. Каждой частице сопоставляется волновая функция, квадрат амплитуды которой равен вероятности обнаружить частицу в определœенном объёме.

В 50-х годах ХХ века было доказано существование антипротона и антинœейтрона.

Еще 30 лет назад полагали, что нейтроны и протоны – элементарные частицы, но эксперименты по взаимодействию движущихся с большими скоростями протонов и электронов показали, что протоны состоят из еще более мелких частиц. Эти частицы впервые исследовал Гелл Манн и назвал их кварками. Известно несколько разновидностей кварков. Предполагают, что существует 6 ароматов: U – кварк (up), d-кварк (down), странный кварк(strange), очарованный кварк (charm), b - кварк (beauty) , t-кварк (truth)..

Кварк каждого аромата имеет один из трех цветов: красный, зелœеный, синий. Это просто обозначение, т.к. размер кварков намного меньше длины волны видимого света и в связи с этим цвета у них нет.

Рассмотрим некоторые характеристики элементарных частиц. В квантовой механике каждой частице приписывают особый собственный механический момент, который не связан ни с перемещением ее в пространстве, ни с ее вращением. Этот собственный механический момент наз. спином . Так, в случае если повернуть электрон на 360 о, то следовало бы ожидать, что он вернется в исходное состояние. При этом исходное состояние будет достигнуто только при еще одном повороте на 360 о. Т.е., чтобы вернуть электрон в исходное состояние, его нужно повернуть на 720 о, по сравнению со спином мы воспринимаем мир лишь наполовину. Пример, на двойной проволочной петле бусинка вернется в исходное положение при повороте на 720 о. Такие частицы обладают полуцелым спином ½. Спин дает нам сведения, как выглядит частица, в случае если смотреть на нее с разных сторон. К примеру, частица со спином ʼʼ0ʼʼ похожа на точку: она выглядит одинаково со всœех сторон. Частицу со спином ʼʼ1ʼʼ можно сравнить со стрелой: с разных сторон она выглядит по-разному и принимает прежний вид при повороте на 360 о. Частицу со спином ʼʼ2ʼʼ можно сравнить со стрелой, заточенной с обеих сторон: любое ее положение повторяется с полуоборота (180 о). Частицы с более высоким спином возвращаются в исходное состояние при повороте на еще меньшую часть полного оборота.

Частицы с полуцелым спином называются фермионами, а частицы с целым спином – бозонами. До недавнего времени считалось, что бозоны и фермионы есть единственно возможные виды неразличимых частиц. На самом делœе существует ряд промежуточных возможностей, а фермионы и бозоны - лишь два предельных случая. Такой класс частиц называют энионами.

Частицы вещества подчиняются принципу запрета Паули, открытому в 1923 году австрийским физиком Вольфганом Паули. Принцип Паули гласит: в системе двух одинаковых частиц с полуцелыми спинами в одном и том же квантовом состоянии не может находиться более одной частицы. Для частиц с целым спином ограничений нет. Это значит, что две одинаковые частицы не могут иметь координаты и скорости, одинаковые с той точностью, которая задается принципом неопределœенности. В случае если частицы вещества имеют очень близкие значения координат, то их скорости должны быть разными, и, следовательно, они не могут находиться долго в точках с этими координатами.

В квантовой механике предполагается, что всœе силы и взаимодействия между частицами переносятся частицами с целочисленным спином, равным 0,1,2. Это происходит следующим образом: к примеру, частица вещества испускает частицу, которая является переносчиком взаимодействия (к примеру, фотон). В результате отдачи скорость частицы меняется. Далее частица-переносчик ʼʼналетаетʼʼ на другую частицу вещества и поглощается ею. Это соударение изменяет скорость второй частицы, как-будто между этими двумя частицами вещества действует сила. Частицы–переносчики, которыми обмениваются частицы вещества, называются виртуальными, потому что, в отличие от реальных, их нельзя зарегистрировать при помощи детектора частиц. При этом они существуют, потому что они создают эффект, поддающийся измерению.

Частицы-переносчики можно классифицировать на 4 типа исходя из величины переносимого ими взаимодействия и от того, с какими частицами они взаимодействуют и от того, с какими частицами они взаимодействуют:

1) Гравитационная сила. Всякая частица находится под действием гравитационной силы, величина которой зависит от массы и энергии частицы. Это слабая сила. Гравитационные действуют на больших расстояниях и всœегда являются силами притяжения. Так, к примеру, гравитационное взаимодействие удерживает планеты на их орбитах и нас на Земле.

В квантовомеханическом подходе к гравитационному полю считается, что сила, действующая между частицами материи, переносится частицей со спином ʼʼ2ʼʼ, которая принято называть гравитоном. Гравитон не обладает собственной массой и в связи с этим переносимая им сила, является дальнодействующей. Гравитационное взаимодействие между Солнцем и Землей объясняется тем, что частицы, из которых состоят Солнце и Земля обмениваются гравитонами. Эффект от обмена этими виртуальными частицами поддается измерению, потому что данный эффект – вращение Земли вокруг Солнца.

2) Следующий вид взаимодействия создается электромагнитными силами , которые действуют между электрически заряженными частицами. Электромагнитное взаимодействие намного сильнее гравитационного: электромагнитная сила, действующая между двумя электронами, примерно в 10 40 раз больше гравитационной силы. Электромагнитное взаимодействие обуславливает существование стабильных атомов и молекул (взаимодействие между электронами и протонами). Переносчиком электромагнитного взаимодействия выступает фотон.

3) Слабое взаимодействие . Оно отвечает за радиоактивность и существует между всœеми частицами вещества со спином ½ . Слабое взаимодействие обеспечивает долгое и ровное горение нашего Солнца, дающего энергию для протекания всœех биологических процессов на Земле. Переносчиками слабого взаимодействия являются три частицы - W ± и Z 0 -бозоны. Οʜᴎ были открыты лишь в 1983ᴦ. Радиус слабого взаимодействия чрезвычайно мал, в связи с этим его переносчики должны обладать большими массами. В соответствии с принципом неопределœенности время жизни частиц с такой большой массой должно быть чрезвычайно коротким-10 -26 с.

4) Сильное взаимодействие представляет собой взаимодействие, ĸᴏᴛᴏᴩᴏᴇ удерживает кварки внутри протонов и нейтронов, а протоны и нейтроны внутри атомного ядра. Переносчиком сильного взаимодействия считается частица со спином ʼʼ1ʼʼ, которая принято называть глюоном. Глюоны взаимодействуют только с кварками и с другими глюонами. Кварки, благодаря глюонам, связываются парами или тройками. Сильное взаимодействие при высоких энергиях ослабевает и кварки и глюоны начинают вести себя как свободные частицы. Это свойство называют асимптотической свободой. В результате экспериментов на мощных ускорителях получены фотографии треков (следов) свободных кварков, родившихся в результате столкновения протонов и антипротонов высокой энергии. Сильное взаимодействие обеспечивает относительную стабильность и существование ядер атомов. Сильное и слабое взаимодействие характерно для процессов микромира, ведущих к взаимопревращениям частиц.

Сильные и слабые взаимодействия стали известны человеку только в первой трети 20 века в связи с изучением радиоактивности и осмыслением результатов бомбардировок атомов различных элементов α-частицами. α-частицы выбивают и протоны, и нейтроны. Цель рассуждений привела физиков к убеждению, что протоны и нейтроны сидят в ядрах атомов, будучи крепко связанными друг с другом. Налицо сильные взаимодействия. С другой стороны, радиоактивные вещества испускают α-, β- и γ-лучи. Когда в 1934 году Ферми создал первую достаточно адекватную экспериментальным данным теорию, то ему пришлось предположить наличие в ядрах атомов незначительных по своим интенсивностям взаимодействий, которые и стали называть слабыми.

Сейчас принимаются попытки объединœения электромагнитного, слабого и сильного взаимодействия, чтобы в результате получилась так называемая ТЕОРИЯ ВЕЛИКОГО ОБЪЕДИНЕНИЯ . Эта теория проливает свет на само наше существование. Не исключено, что наше существование есть следствие образования протонов. Такая картина начала Вселœенной представляется наиболее естественной. Земное вещество в основном состоит из протонов, но в нем нет ни антипротонов, ни антинœейтронов. Эксперименты с космическими лучами показали, что то же самое справедливо и для всœего вещества в нашей Галактике.

Характеристики сильного, слабого, электромагнитного и гравитационного взаимодействий приведена в таблице.

Порядок интенсивности каждого взаимодействия, указанный в таблице, определœен по отношению к интенсивности сильного взаимодействия, принятого за 1.

Приведем классификацию наиболее известных в настоящее время элементарных частиц.

ФОТОН. Масса покоя и электрический заряд его равны 0. Фотон имеет целочисленный спин и является бозоном.

ЛЕПТОНЫ. Этот класс частиц не участвует в сильном взаимодействии, но обладает электромагнитными, слабыми и гравитационными взаимодействиями. Лептоны имеют полуцелый спин и относятся к фермионам. Элементарным частицам, входящим в эту группу, приписывается некоторая характеристика, называемая лептонным зарядом. Лептонный заряд, в отличие от электрического, не является источником какого-либо взаимодействия, его роль пока полностью не выяснена. Значение лептонного заряда у лептонов L=1, у антилептонов L= -1, всœех остальных элементарных частиц L=0.

МЕЗОНЫ. Это нестабильные частицы, которым присуще сильное взаимодействие. Название ʼʼмезоныʼʼ означает ʼʼпромежуточныйʼʼ и обусловлено тем, что первоначально открытые мезоны имели массу большую, чем у электрона, но меньшую, чем у протона. Сегодня известны мезоны, массы которых больше массы протонов. Все мезоны имеют целый спин и, следовательно являются бозонами.

БАРИОНЫ. В данный класс входит группа тяжелых элементарных частиц с полуцелым спином (фермионы) и массой, не меньшей массы протона. Единственным стабильным барионом является протон, нейтрон стабилен лишь внутри ядра. Для барионов характерны 4 вида взаимодействия. В любых ядерных реакциях и взаимодействиях их общее число остается неизменным.

ОСНОВНЫЕ ПРИНЦИПЫ КВАНТОВОЙ МЕХАНИКИ. - понятие и виды. Классификация и особенности категории "ОСНОВНЫЕ ПРИНЦИПЫ КВАНТОВОЙ МЕХАНИКИ." 2017, 2018.

А. ШИШЛОВА. по материалам журналов "Успехи физических наук" и "Scientific american".

Квантово-механическое описание физических явлений микромира считается единственно верным и наиболее полно отвечающим реальности. Объекты макромира подчиняются законам другой, классической механики. Граница между макро- и микромиром размыта, а это вызывает целый ряд парадоксов и противоречий. Попытки их ликвидировать приводят к появлению других взглядов на квантовую механику и физику микромира. Видимо, наилучшим образом выразить их удалось американскому теоретику Дэвиду Джозефу Бому (1917-1992).

1. Мысленный эксперимент по измерению компонент спина (собственного количества движения) электрона с помощью некоего устройства - "черного ящика".

2. Последовательное измерение двух компонент спина. Измеряется "горизонтальный" спин электрона (слева), потом "вертикальный" спин (справа), потом снова "горизонтальный" (внизу).

3А. Электроны с "правым" спином после прохождения через "вертикальный" ящик движутся в двух направлениях: вверх и вниз.

3Б. В том же эксперименте на пути одного из двух пучков поставим некую поглощающую поверхность. Далее в измерениях участвует лишь половина электронов, и на выходе половина их имеет "левый" спин, а половина - "правый".

4. Состояние любого объекта микромира описывает так называемая волновая функция.

5. Мысленный эксперимент Эрвина Шредингера.

6. Эксперимент, предложенный Д. Бомом и Я. Аароновым в 1959 году, должен был показать, что магнитное поле, недоступное для частицы, влияет на ее состояние.

Чтобы понять, какие трудности испытывает современная квантовая механика, нужно вспомнить, чем она отличается от классической, ньютоновской механики. Ньютон создал общую картину мира, в которой механика выступала как универсальный закон движения материальных точек или частиц - маленьких комочков материи. Из этих частиц можно было построить любые объекты. Казалось, что механика Ньютона способна теоретически объяснить все природные явления. Однако в конце прошлого века выяснилось, что классическая механика неспособна объяснить законы теплового излучения нагретых тел. Этот, казалось бы, частный вопрос привел к необходимости пересмотреть физические теории и потребовал новых идей.

В 1900 году появилась работа немецкого физика Макса Планка, в которой эти новые идеи и появились. Планк предположил, что излучение происходит порциями, квантами. Такое представление противоречило классическим воззрениям, но прекрасно объясняло результаты экспериментов (в 1918 году эта работа была удостоена Нобелевской премии по физике). Спустя пять лет Альберт Эйнштейн показал, что не только излучение, но и поглощение энергии должно происходить дискретно, порциями, и сумел объяснить особенности фотоэффекта (Нобелевская премия 1921 года). Световой квант - фотон, по Эйнштейну, имея волновые свойства, одновременно во многом напоминает частицу (корпускулу). В отличие от волны, например, он либо поглощается целиком, либо не поглощается вовсе. Так возник принцип корпускулярно-волнового дуализма электромагнитного излучения.

В 1924 году французский физик Луи де Бройль выдвинул достаточно "безумную" идею, предположив, что все без исключения частицы - электроны, протоны и целые атомы обладают волновыми свойствами. Год спустя Эйнштейн отозвался об этой работе: "Хотя кажется, что ее писал сумасшедший, написана она солидно", а в 1929 году де Бройль получил за нее Нобелевскую премию...

На первый взгляд, повседневный опыт гипотезу де Бройля отвергает: в окружающих нас предметах ничего "волнового" как будто нет. Расчеты, однако, показывают, что длина дебройлевской волны электрона, ускоренно го до энергии 100 электрон-вольт, равна 10 -8 сантиметра. Эту волну нетрудно обнаружить экспериментально, пропустив поток электронов сквозь кристалл. На кристаллической решетке произойдет дифракция их волн и возникнет характерная полосатая картинка. А у пылинки массой 0,001 грамма при той же скорости длина волны де Бройля будет в 10 24 раз меньше, и обнаружить ее никакими средствами нельзя.

Волны де Бройля непохожи на механические волны - распространяющиеся в пространстве колебания материи. Они характеризуют вероятность обнаружить частицу в данной точке пространства. Любая частица оказывается как бы "размазанной" в пространстве, и существует отличная от нуля вероятность обнаружить ее где угодно. Классическим примером вероятностного описания объектов микромира служит опыт по дифракции электронов на двух щелях. Прошедший через щель электрон регистрируется на фотопластинке или на экране в виде пятнышка. Каждый электрон может пройти либо через правую щель, либо через левую совершенно случайным образом. Когда пятнышек становится очень много, на экране возникает дифракционная картина. Почернение экрана оказывается пропорциональным вероятности появления электрона в данном месте.

Идеи де Бройля углубил и развил австрийский физик Эрвин Шредингер. В 1926 году он вывел систему уравнений - волновых функций, описывающих поведение квантовых объектов во времени в зависимости от их энергии (Нобелевская премия 1933 года). Из уравнений следует, что любое воздействие на частицу меняет ее состояние. А поскольку процесс измерения параметров частицы неизбежно связан с воздействием, возникает вопрос: что же регистрирует измерительный прибор, вносящий непредсказуемые возмущения в состояние измеряемого объекта?

Таким образом, исследование элементарных частиц позволило установить, по крайней мере, три чрезвычайно удивительных факта, касающихся общей физической картины мира.

Во-первых, оказалось, что процессами, происходящими в природе, управляет чистый случай. Во-вторых, далеко не всегда существует принципиальная возможность указать точное положение материального объекта в пространстве. И, в-третьих, что, пожалуй, наиболее странно, поведение таких физических объектов, как "измерительный прибор", или "наблюдатель", не описывается фундаментальными законами, справедливыми для прочих физических систем.

Впервые к таким выводам пришли сами основоположники квантовой теории - Нильс Бор, Вернер Гейзенберг, Вольфганг Паули. Позднее данная точка зрения, получившая название Копенгагенской интерпретации квантовой механики, была принята в теоретической физике в качестве официальной, что и нашло свое отражение во всех стандартных учебниках.

Вполне возможно, однако, что подобные заключения были сделаны слишком поспешно. В 1952 году американский физик-теоретик Дэвид Д. Бом создал глубоко проработанную квантовую теорию, отличную от общепринятой, которая так же хорошо объясняет все известные ныне особенности поведения субатомных частиц. Она представляет собой единый набор физических законов, позволяющий избежать какой-либо случайности в описании поведения физических объектов, а также неопределенности их положения в пространстве. Несмотря на это, бомовская теория до самого последнего времени почти полностью игнорировалась.

Чтобы лучше представить себе всю сложность описания квантовых явлений, проведем несколько мысленных экспериментов по измерению спина (собственного момента количества движения) электрона. Мысленных потому, что создать измерительный прибор, позволяющий точно измерять обе компоненты спина, пока что не удалось никому. Столь же безуспешными оказываются попытки предсказать, какие именно электроны поменяют свой спин в ходе описанного эксперимента, а какие нет.

Эти эксперименты включают в себя измерение двух компонент спина, которые условно будем называть "вертикальным" и "горизонтальным" спинами. Каждая из компонент в свою очередь может принимать одно из значений, которые мы также условно назовем "верхним" и "нижним", "правым" и "левым" спинами соответственно. Измерение основано на пространственном разделении частиц с разными спинами. Приборы, осуществляющие разделение, можно представить себе как некие "черные ящики" двух типов - "горизонтальный" и "вертикальный" (рис. 1). Известно, что разные компоненты спина свободной частицы совершенно независимы (физики говорят - не коррелируют между собой). Однако в ходе измерения одной компоненты значение другой может измениться, причем совершенно неконтролируемым образом (2).

Пытаясь объяснить полученные результаты, традиционная квантовая теория пришла к выводу, что необходимо полностью отказаться от детерминистского, то есть полностью определяющего состояние

объекта, описания явлений микромира. Поведение электронов подчиняется принципу неопределенности, согласно которому компоненты спина не могут быть точно измерены одновременно.

Продолжим наши мысленные эксперименты. Будем теперь не только расщеплять пучки электронов, но и заставим их отражаться от неких поверхностей, пересекаться и снова соединяться в один пучок в специальном "черном ящике" (3).

Результаты этих экспериментов противоречат обычной логике. Действительно, рассмотрим поведение какого-либо электрона в случае, когда поглощающая стенка отсутствует (3 А). Куда он будет двигаться? Допустим, что вниз. Тогда, если первоначально электрон имел "правый" спин, он так и останется правым до конца эксперимента. Однако, применив к этому электрону результаты другого эксперимента (3 Б), мы увидим, что его "горизонтальный" спин на выходе должен быть в половине случаев "правым", а в половине - "левым". Явное противоречие. Мог ли электрон пойти вверх? Нет, по той же самой причине. Быть может, он двигался не вниз, не вверх, а как-то по-другому? Но, перекрыв верхний и нижний маршруты поглощающими стенками, мы на выходе не получим вообще ничего. Остается предположить, что электрон может двигаться сразу по двум направлениям. Тогда, имея возможность фиксировать его положение в разные моменты времени, в половине случаев мы находили бы его на пути вверх, а в половине - на пути вниз. Ситуация достаточно парадоксальная: материальная частица не может ни раздваиваться, ни "прыгать" с одной траектории на другую.

Что говорит в данном случае традиционная квантовая теория? Она просто объявляет все рассмотренные ситуации невозможными, а саму постановку вопроса об определенном направлении движения электрона (и соответственно о направлении его спина) - некорректной. Проявление квантовой природы электрона в том и заключается, что ответа на данный вопрос в принципе не существует. Состояние электрона представляет собой суперпозицию, то есть сумму двух состояний, каждое из которых имеет определенное значение "вертикального" спина. Понятие о суперпозиции - один из основополагающих принципов квантовой механики, с помощью которого вот уже более семидесяти лет удается успешно объяснять и предсказывать поведение всех известных квантовых систем.

Для математического описания состояний квантовых объектов используется волновая функция, которая в случае одной частицы просто определяет ее координаты. Квадрат волновой функции равен вероятности обнаружить частицу в данной точке пространства. Таким образом, если частица находится в некой области А, ее волновая функция равна нулю всюду, за исключением этой области. Аналогично частица, локализованная в области Б, имеет волновую функцию, отличную от нуля только в Б. Если же состояние частицы оказывается суперпозицией пребывания ее в А и Б, то волновая функция, описывающая такое состояние, отлична от нуля в обеих областях пространства и равна нулю всюду вне их. Однако, если мы поставим эксперимент по определению положения такой частицы, каждое измерение будет давать нам только одно значение: в половине случаев мы обнаружим частицу в области А, а в половине - в Б (4). Это означает, что при взаимодействии частицы с окружением, когда фиксируется только одно из состояний частицы, ее волновая функция как бы коллапсирует, "схлопывается" в точку.

Одно из основных утверждений квантовой механики заключается в том, что физические объекты полностью описываются их волновыми функциями. Таким образом, весь смысл законов физики сводится к предсказанию изменений волновых функций во времени. Эти законы делятся на две категории в зависимости от того, предоставлена ли система самой себе или же она находится под непосредственным наблюдением и в ней производятся измерения.

В первом случае мы имеем дело с линейными дифференциальными "уравнениями движения", уравнениями детерминистскими, которые полностью описывают состояние микрочастиц. Следовательно, зная волновую функцию частицы в какой-то момент времени, можно точно предсказать поведение частицы в любой последующий момент. Однако при попытке предсказать результаты измерений каких-либо свойств той же частицы нам придется иметь дело уже с совершенно другими законами - чисто вероятностными.

Возникает естественный вопрос: как отличить условия применимости той или другой группы законов? Создатели квантовой механики указывают на необходимость четкого разделения всех физических процессов на "измерения" и "собственно физические процессы", то есть на "наблюдателей" и "наблюдаемых", или, по философской терминологии, на субъект и объект. Однако отличие между этими категориями носит не принципиальный, а чисто относительный характер. Тем самым, по мнению многих физиков и философов, квантовая теория в такой интерпретации становится неоднозначной, теряет свою объективность и фундаментальность. "Проблема измерения" стала основным камнем преткновения в квантовой механике. Ситуация несколько напоминает знаменитую апорию Зенона "Куча". Одно зерно - явно не куча, а тысяча (или, если угодно, миллион) - куча. Два зерна - тоже не куча, а 999 (или 999999) - куча. Эта цепочка рассуждений приводит к некоему количеству зерен, при котором понятия "куча - не куча" станут неопределенными. Они будут зависеть от субъективной оценки наблюдателя, то есть от способа измерений, хотя бы и на глаз.

Все окружающие нас макроскопические тела предполагаются точечными (или протяженными) объектами с фиксированными координатами, которые подчиняются законам классической механики. Но это означает, что классическое описание можно продолжить вплоть до самых малых частиц. С другой стороны, идя со стороны микромира, следует включать в волновое описание объекты все большего размера вплоть до Вселенной в целом. Граница между макро- и микромиром не определена, и попытки ее обозначить приводят к парадоксу. Наиболее четко указывает на него так называемая "задача о кошке Шредингера" - мысленный эксперимент, предложенный Эрвином Шредингером в 1935 году (5).

В закрытом ящике сидит кошка. Там же находятся флакон с ядом, источник излучения и счетчик заряженных частиц, подсоединенный к устройству, разбивающему флакон в момент регистрации частицы. Если яд разольется, кошка погибнет. Зарегистрировал счетчик частицу или нет, мы не можем знать в принципе: законы квантовой механики подчиняются законам вероятности. И с этой точки зрения, пока счетчик не произвел измерения, он находится в суперпозиции двух состояний - "регистрация - нерегистрация". Но тогда в этот момент и кошка оказывается в суперпозиции состояний жизни и смерти.

В действительности, конечно, реального парадокса здесь быть не может. Регистрация частицы - процесс необратимый. Он сопровождается коллапсом волновой функции, вслед за чем срабатывает механизм, разбивающий флакон. Однако ортодоксальная квантовая механика не рассматривает необратимых явлений. Парадокс, возникающий в полном согласии с ее законами, наглядно показывает, что между квантовым микромиром и классическим макромиром имеется некая промежуточная область, в которой квантовая механика не работает.

Итак, несмотря на несомненные успехи квантовой механики в объяснении экспериментальных фактов, в настоящий момент она едва ли может претендовать на полноту и универсальность описания физических явлений. Одной из наиболее смелых альтернатив квантовой механики и стала теория, предложенная Дэвидом Бомом.

Задавшись целью построить теорию, свободную от принципа неопределенности, Бом предложил считать микрочастицу материальной точкой, способной занимать точное положение в пространстве. Ее волновая функция получает статус не характеристики вероятности, а вполне реального физического объекта, некоего квантовомеханического поля, оказывающего мгновенное силовое воздействие. В свете этой интерпретации, например, "парадокс Эйнштейна-Подольского-Розена" (см. "Наука и жизнь" № 5, 1998 г.) перестает быть парадоксом. Все законы, управляющие физическими процессами, становятся строго детерминистскими и имеют вид линейных дифференциальных уравнений. Одна группа уравнений описывает изменение волновых функций во времени, другая - их воздействие на соответствующие частицы. Законы применимы ко всем физическим объектам без исключения - и к "наблюдателям", и к "наблюдаемым".

Таким образом, если в какой-то момент известны положение всех частиц во Вселенной и полная волновая функция каждой, то в принципе можно точно рассчитать положение частиц и их волновые функции в любой последующий момент времени. Следовательно, ни о какой случайности в физических процессах не может быть и речи. Другое дело, что мы никогда не сможем обладать всей информацией, необходимой для точных вычислений, да и сами расчеты оказываются непреодолимо сложными. Принципиальное незнание многих параметров системы приводит к тому, что на практике мы всегда оперируем некими усредненными величинами. Именно это "незнание", по мнению Бома, заставляет нас прибегать к вероятностным законам при описании явлений в микромире (подобная ситуация возникает и в классической статистической механике, например в термодинамике, которая имеет дело с огромным количеством молекул). Теория Бома предусматривает определенные правила усреднения неизвестных параметров и вычисления вероятностей.

Вернемся к экспериментам с электронами, изображенным на рис. 3 А и Б. Теория Бома дает им следующее объяснение. Направление движения электрона на выходе из "вертикального ящика" полностью определяется исходными условиями - начальным положением электрона и его волновой функцией. В то время как электрон движется либо вверх, либо вниз, его волновая функция, как это следует из дифференциальных уравнений движения, расщепится и станет распространяться сразу в двух направлениях. Таким образом, одна часть волновой функции окажется "пустой", то есть будет распространяться отдельно от электрона. Отразившись от стенок, обе части волновой функции воссоединятся в "черном ящике", и при этом электрон получит информацию о том участке пути, где его не было. Содержание этой информации, например о препятствии на пути "пустой" волновой функции, может оказать существенное воздействие на свойства электрона. Это и снимает логическое противоречие между результатами экспериментов, изображенных на рисунке. Необходимо отметить одно любопытное свойство "пустых" волновых функций: будучи реальными, они тем не менее никак не влияют на посторонние объекты и не могут быть зарегистрированы измерительными приборами. А на "свой" электрон "пустая" волновая функция оказывает силовое воздействие независимо от расстояния, причем воздействие это передается мгновенно.

Попытки "исправить" квантовую механику или объяснить возникающие в ней противоречия предпринимали многие исследователи. Построить детерминистскую теорию микромира, например, пытался де Бройль, который был согласен с Эйнштейном, что "Бог не играет в кости". А видный отечественный теоретик Д. И. Блохинцев считал, что особенности квантовой механики проистекают из-за невозможности изолировать частицу от окружающего мира. При любой температуре выше абсолютного нуля тела излучают и поглощают электромаг нитные волны. С позиций квантовой механики это означает, что их положение непрерывно "измеряется", вызывая коллапс волновых функций. "С этой точки зрения никаких изолированных, предоставленных самим себе "свободных" частиц не существует, - писал Блохинцев. - Возможно, что в этой связи частиц и cреды и скрывается природа той невозможности изолировать частицу, которая проявляется в аппарате квантовой механики".

И все-таки - почему же интепретация квантовой механики, предложенная Бомом, до сих пор не получила должного признания в научном мире? И как объяснить почти повсеместное господство традиционной теории, несмотря на все ее парадоксы и "темные места"?

Долгое время новую теорию не хотели рассматривать всерьез на основании того, что в предсказании исхода конкретных экспериментов она полностью совпадает с квантовой механикой, не приводя к существен но новым результатам. Вернер Гейзенберг, например, считал, что "для любого опыта его (Бома) результаты совпадают с копенгагенской интерпретацией. Отсюда первое следствие: интерпретацию Бома нельзя опровергнуть экспериментом..." Некоторые считают теорию ошибочной, так как в ней преимущественная роль отводится положению частицы в пространстве. По их мнению, это противоречит физической реальности, ибо явления в квантовом мире принципиально не могут быть описаны детерминистскими законами. Существует немало и других, не менее спорных аргументов против теории Бома, которые сами требуют серьезных доказательств. Во всяком случае, ее пока что действительно никому не удалось полностью опровергнуть. Более того - работу над ее совершенствованием продолжают многие, в том числе отечественные, исследователи.