Время жизни звезд. Жизненный цикл звезд

Если где-то во Вселенной накапливается достаточно вещества, оно сжимается в плотный комок, в котором начинается термоядерная реакция. Так зажигаются звёзды. Первые вспыхнули во тьме юной Вселенной 13,7 миллиардов (13,7*10 9) лет назад, а наше Солнце — всего каких-то 4,5 миллиарда лет назад. Срок жизни звезды и процессы, происходящие в конце этого срока, зависят от массы звезды.

Пока в звезде продолжается термоядерная реакция превращения водорода в гелий, она находится на главной последовательности . Время нахождения звезды на главной последовательности зависит от массы: самые большие и тяжёлые быстро доходят до стадии красного гиганта, а затем сходят с главной последовательности в результате взрыва сверхновой или образования белого карлика.

Судьба гигантов

Самые большие и массивные звёзды сгорают быстро и взрываются сверхновыми. После взрыва сверхновой остаётся нейтронная звезда или чёрная дыра, а вокруг них — материя, выброшенная колоссальной энергией взрыва, которая после становится материалом для новых звёзд. Из наших ближайших звёздных соседей такая судьба ждёт, например, Бетельгейзе , однако когда она взорвётся, подсчитать невозможно.

Туманность, образовавшаяся в результате выброса материи при взрыве сверхновой. В центре туманности — нейтронная звезда.

Нейтронная звезда — это страшный физический феномен. Ядро взорвавшейся звезды сжимается — примерно так же, как газ в двигателе внутреннего сгорания, только в очень большом и эффективном: шар диаметром в сотни тысяч километров превращается в шарик от 10 до 20 километров в поперечнике. Сила сжатия так велика, что электроны падают на атомные ядра, образуя нейтроны — отсюда название.


NASA Нейтронная звезда (видение художника)

Плотность материи при таком сжатии вырастает примерно на 15 порядков, а температура поднимается до непредставимых 10 12 К в центре нейтронной звезды и 1 000 000 К на периферии. Часть этой энергии излучается в форме фотонного излучения, часть уносят с собой нейтрино, образующииеся в ядре нейтронной звезды. Но даже за счёт очень эффективного нейтринного охлаждения нейтронная звезда остывает очень медленно: для полного исчерпания энергии требуется 10 16 или даже 10 22 лет. Что останется на месте остывшей нейтронной звезды, сказать сложно, а пронаблюдать — невозможно: мир слишком для этого слишком молод. Существует предположение о том, что на месте остывшей звезды опять-таки образуется чёрная дыра.


Черные дыры возникают в результате гравитационного коллапса очень массивных объектов — например, при взрывах сверхновых. Возможно, через триллионы лет в чёрные дыры превратятся остывшие нейтронные звёзды.

Участь звёзд средних масштабов

Другие, менее массивные звёзды дольше, чем самые большие, остаются на главной последовательности, зато, сойдя с неё, умирают гораздо быстрее, чем их нейтронные родственники. Больше 99% звёзд во Вселенной никогда взорвутся и не превратятся ни в черные дыры, ни в нейтронные звёзды — их ядра слишком малы для таких космических драм. Вместо этого звёзды средней массы в конце жизни превращаются в красные гиганты, которые, в зависимости от массы, превращаются в белые карлики, взрываются, полностью рассеиваясь, или становятся нейтронными звёздами.

Белые карлики составляют сейчас от 3 до 10% звёздного населения Вселенной. Их температура очень велика — более 20 000 К, более чем втрое больше, чем температура поверхности Солнца — но всё-таки меньше, чем у нейтронных звёзд, и благодаря более низкой температуре и большей площади белые карлики остывают быстрее — за 10 14 — 10 15 лет. Это означает, что в ближайшие 10 триллионов лет — когда Вселенная станет в тысячу раз старше, чем сейчас, — во вселенной появится новый тип объекта: чёрный карлик, продукт остывания белого карлика.

Пока черных карликов в космосе нет. Даже самые старые остывающие звёзды на сегодняшний день потеряли максимум 0,2% своей энергии; для белого карлика с температурой в 20 000 К это означает остывание до 19 960 K.

Для самых маленьких

О том, что происходит, когда остывают самые маленькие звёзды — такие, как наш ближайший сосед, красный карлик Проксима Центавра, науке известно ещё меньше, чем о сверхновых и чёрных карликах. Термоядерный синтез в их ядрах идёт медленно, и на главной последовательности они остаются дольше остальных — по некоторым расчётам, до 10 12 лет, а после, предположительно, продолжат жизнь как белые карлики, то есть будут сиять еще 10 14 — 10 15 лет до превращения в чёрный карлик.

Звёздная эволюция в астрономии – последовательность изменений, которым звезда подвергается в течение её жизни, то есть на протяжении сотен тысяч, миллионов или миллиардов лет, пока она излучает свет и тепло. в течение таких колоссальных промежутков времени изменения оказываются весьма значительными.

Эволюция звезды начинается в гигантском молекулярном облаке, также называемом звёздной колыбелью. Большая часть «пустого» пространства в галактике в действительности содержит от 0,1 до 1 молекулы на см 3 . Молекулярное облако же имеет плотность около миллиона молекул на см 3 . Масса такого облака превышает массу Солнца в 100 000–10 000 000 раз благодаря своему размеру: от 50 до 300 световых лет в поперечнике.

Эволюция звезды начинается в гигантском молекулярном облаке, также называемом звёздной колыбелью.

Пока облако свободно обращается вокруг центра родной галактики, ничего не происходит. Однако из-за неоднородности гравитационного поля в нём могут возникнуть возмущения, приводящие к локальным концентрациям массы. Такие возмущения вызывают гравитационный коллапс облака. Один из сценариев, приводящих к этому – столкновение двух облаков. Другим событием, вызывающим коллапс, может быть прохождение облака через плотный рукав спиральной галактики. Также критическим фактором может стать взрыв близлежащей сверхновой звезды, ударная волна которого столкнётся с молекулярным облаком на огромной скорости. Кроме того, возможно столкновение галактик, способное вызвать всплеск звёздообразования, по мере того, как газовые облака в каждой из галактик сжимаются в результате столкновения. В общем, любые неоднородности в силах, действующих на массу облака, могут запустить процесс звездообразования.

любые неоднородности в силах, действующих на массу облака, могут запустить процесс звездообразования.

В ходе протекания этого процесса неоднородности молекулярного облака будут сжиматься под действием собственного тяготения и постепенно принимать форму шара. При сжатии энергия гравитации переходит в тепло, и температура объекта возрастает.

Когда температура в центре достигает 15–20 миллионов К, начинаются термоядерные реакции и сжатие прекращается. Объект становится полноценной звездой.

Последующие стадии эволюции звезды почти полностью зависят от её массы, и лишь в самом конце эволюции звезды свою роль может сыграть ее химический состав.

Первая стадия жизни звезды подобна солнечной – в ней доминируют реакции водородного цикла.

В таком состоянии она пребывает бо́льшую часть своей жизни, находясь на главной последовательности диаграммы Герцшпрунга – Расселла , пока не закончатся запасы топлива в её ядре. Когда в центре звезды весь водород превращается в гелий, образуется гелиевое ядро, а термоядерное горение водорода продолжается на периферии ядра.

Маленькие и холодные красные карлики медленно сжигают запасы водорода и остаются на главной последовательности десятки миллиардов лет, в то время как массивные сверхгиганты сходят с главной последовательности уже через несколько десятков миллионов (а некоторые спустя всего несколько миллионов) лет после формирования.

В настоящее время достоверно неизвестно, что происходит с лёгкими звёздами после истощения запаса водорода в их недрах. Поскольку возраст вселенной составляет 13,8 миллиардов лет, что недостаточно для истощения запаса водородного топлива в таких звёздах, современные теории основываются на компьютерном моделировании процессов, происходящих в таких звёздах.

Согласно теоретическим представлениям, некоторые из легких звезд, теряя свое вещество (звездный ветер), будут постепенно испаряться, становясь все меньше и меньше. Другие – красные карлики, будут медленно остывать миллиарды лет, продолжая слабо излучать в инфракрасном и микроволновом диапазонах электромагнитного спектра.

Звёзды среднего размера, такие как Солнце, остаются на главной последовательности в среднем 10 миллиардов лет.

Считается, что Солнце все ещё на ней, так как оно находится в середине своего жизненного цикла. Как только звезда истощает запас водорода в ядре, она покидает главную последовательность.

Как только звезда истощает запас водорода в ядре, она покидает главную последовательность.

Без давления, возникавшего в ходе термоядерных реакций и уравновешивавшего внутреннюю гравитацию, звезда снова начинает сжиматься, как уже было ранее в процессе её формирования.

Температура и давление снова растут, но, в отличие от стадии протозвезды, до гораздо более высокого уровня.

Коллапс продолжается до тех пор, пока при температуре приблизительно в 100 миллионов К не начнутся термоядерные реакции с участием гелия, в ходе которых происходит превращение гелия в более тяжёлые элементы (гелий – в углерод, углерод – в кислород, кислород – в кремний, и наконец – кремний в железо).

Коллапс продолжается до тех пор, пока при температуре приблизительно в 100 миллионов К не начнутся термоядерные реакции с участием гелия

Возобновившееся на новом уровне термоядерное «горение» вещества становится причиной чудовищного расширения звезды. Звезда «распухает», становясь очень «рыхлой», и её размер увеличивается приблизительно в 100 раз.

Звезда становится красным гигантом, а фаза горения гелия продолжается около нескольких миллионов лет.

То, что происходит далее также зависит от массы звезды.

У звезд средней величины реакция термоядерного сжигания гелия может приводить к взрывному сбросу внешних слоев звезды с образованием из них планетарной туманности . Ядро звезды, в котором прекращаются термоядерные реакции, остывая, превращается в гелиевый белый карлик , как правило, имеющий массу до 0,5-0,6 Солнечных масс и диаметр порядка диаметра Земли.

Для массивных и сверхмассивных звезд (с массой от пяти Солнечных масс и более) происходящие в их ядре процессы по мере нарастания гравитационного сжатия приводят к взрыву сверхновой звезды с выделением огромной энергии. Взрыв сопровождается выбросом значительной массы вещества звезды в межзвёздное пространство. Это вещество в дальнейшем участвует в образовании новых звёзд, планет или спутников. Именно благодаря сверхновым Вселенная в целом и каждая галактика в частности, химически эволюционирует. Оставшееся после взрыва ядро звезды может закончить свою эволюцию как нейтронная звезда (пульсар), если масса звезды на поздних стадиях превышает предел Чандрасекара (1,44 Солнечной массы), либо как чёрная дыра , если масса звезды превышает предел Оппенгеймера – Волкова (оценочные значения 2,5-3 Солнечных масс).

Процесс звездной эволюции во Вселенной непрерывен и цикличен – угасают старые звезды, на смену им зажигаются новые.

По современным научным представлениям, из звездного вещества образовались элементы, необходимые для возникновения планет и жизни на Земле. Хотя единой общепринятой точки зрения на то, как возникла жизнь, пока нет.

Вселенная представляет собой постоянно меняющийся макромир, где каждый объект, субстанция или материя пребывают в состоянии трансформации и изменений. Эти процессы длятся миллиарды лет. В сравнении с продолжительностью человеческой жизни этот непостижимый умом временной отрезок времени огромен. В масштабах космоса эти изменения достаточно скоротечны. Звезды, которые мы сейчас наблюдаем на ночном небосклоне, были такими же и тысячи лет назад, когда их могли видеть египетские фараоны, однако на самом деле все это время ни на секунду не прекращалось изменение физических характеристик небесных светил. Звезды рождаются, живут и непременно стареют — эволюция звезд идет своим чередом.

Положение звезд созвездия Большая Медведица в разные исторические периоды в интервале 100000 лет назад — наше время и через 100 тыс. лет

Интерпретация эволюции звезд с точки зрения обывателя

Для обывателя космос представляется миром спокойствия и безмолвия. На самом деле Вселенная является гигантской физической лабораторией, где происходят грандиозные преобразования, в ходе которых меняется химический состав, физические характеристики и строение звезд. Жизнь звезды длится до тех пор, пока она светит и отдает тепло. Однако такое блистательное состояние не вечно. За ярким рождением следует период зрелости звезды, который неизбежно заканчивается старением небесного тела и его смертью.

Образование протозвезды из газопылевого облака 5-7 млрд. лет назад

Вся наша информация о звездах сегодня умещается в рамки науки. Термодинамика дает нам объяснение процессов гидростатического и теплового равновесия, в котором пребывает звездная материя. Ядерная и квантовая физика позволяют понять сложный процесс ядерного синтеза, благодаря которому звезда существует, излучая тепло и даря свет окружающему пространству. При рождении звезды формируется гидростатическое и тепловое равновесие, поддерживаемое за счет собственных источников энергии. На закате блистательной звездной карьеры это равновесие нарушается. Наступает черед необратимых процессов, итогом которых становится разрушение звезды или коллапс — грандиозный процесс мгновенной и блестящей смерти небесного светила.

Взрыв сверхновой — яркий финал жизни звезды, родившейся в первые годы существования Вселенной

Изменение физических характеристик звезд обусловлено их массой. На скорость эволюции объектов оказывает влияние их химический состав и в некоторой степени существующие астрофизические параметры — скорость вращения и состояние магнитного поля. Точно говорить о том, как все происходит на самом деле, не представляется возможным ввиду огромной продолжительности описываемых процессов. Скорость эволюции, этапы трансформации зависят от времени рождения звезды и ее месторасположения во Вселенной на момент рождения.

Эволюция звезд с научной точки зрения

Любая звезда зарождается из сгустка холодного межзвездного газа, который под действием внешних и внутренних гравитационных сил сжимается до состояния газового шара. Процесс сжатия газовой субстанции не останавливается ни на мгновение, сопровождаясь колоссальным выделением тепловой энергии. Температура нового образования растет до тех пор, пока не запускается в ход термоядерный синтез. С этого момента сжатие звездной материи прекращается, достигнут баланс между гидростатическим и тепловым состоянием объекта. Вселенная пополнилась новой полноценной звездой.

Главное звездное топливо — атом водорода в результате запущенной термоядерной реакции

В эволюции звезд принципиальное значение имеют их источники тепловой энергии. Улетучивающаяся в пространство с поверхности звезды лучистая и тепловая энергия пополняются за счет охлаждения внутренних слоев небесного светила. Постоянно протекающие термоядерные реакции и гравитационное сжатие в недрах звезды восполняют потерю. Пока в недрах звезды имеется в достаточном количестве ядерное топливо, звезда светится ярким светом и излучает тепло. Как только процесс термоядерного синтеза замедляется или прекращается совсем, для поддержания теплового и термодинамического равновесия запускается в действие механизм внутреннего сжатия звезды. На данном этапе объект уже излучает тепловую энергию, которая видна только в инфракрасном диапазоне.

Исходя из описанных процессов, можно сделать вывод, эволюция звезд представляет собой последовательную смену источников звездной энергии. В современной астрофизике процессы трансформации звезд можно расставить в соответствии с тремя шкалами:

  • ядерная временная шкала;
  • тепловой отрезок жизни звезды;
  • динамический отрезок (финальный) жизни светила.

В каждом отдельном случае рассматриваются процессы, определяющие возраст звезды, ее физические характеристики и разновидность гибели объекта. Ядерная временная шкала интересна до тех пор, пока объект питается за счет собственных источников тепла и излучает энергию, являющуюся продуктом ядерных реакций. Оценка длительности этого этапа вычисляется путем определения количества водорода, которое превратится в процессе термоядерного синтеза в гелий. Чем больше масса звезды, тем больше интенсивность ядерных реакций и соответственно выше светимость объекта.

Размеры и масса различных звезд, начиная от сверхгиганта, заканчивая красным карликом

Тепловая временная шкала определяет этап эволюции, в течение которого звезда расходует всю тепловую энергию. Этот процесс начинается с того момента, когда израсходовались последние запасы водорода и ядерные реакции прекратились. Для поддержания равновесия объекта запускается процесс сжатия. Звездная материя падает к центру. При этом происходит переход кинетической энергии в тепловую энергию, затрачиваемую на поддержание необходимого температурного баланса внутри звезды. Часть энергии улетучивается в космическое пространство.

Учитывая тот факт, что светимость звезд определяется их массой, в момент сжатия объекта его яркость в пространстве не меняется.

Звезда на пути к главной последовательности

Формирование звезды происходит в соответствии с динамической временной шкалой. Звездный газ свободно падает внутрь к центру, увеличивая плотность и давление в недрах будущего объекта. Чем выше плотность в центре газового шара, тем больше температура внутри объекта. С этого момента основной энергией небесного тела становится тепло. Чем больше плотность и выше температура, тем больше давление в недрах будущей звезды. Свободное падение молекул и атомов прекращается, процесс сжатия звездного газа приостанавливается. Такое состояние объекта обычно называют протозвездой. Объект на 90% состоит из молекулярного водорода. При достижении температуры 1800К водород переходит в атомарное состояние. В процессе распада расходуется энергия, повышение температуры замедляется.

Вселенная на 75% состоит из молекулярного водорода, который в процессе формирования протозвезд превращается в атомарный водород — ядерное топливо звезды

В подобном состоянии давление внутри газового шара уменьшается, тем самым давая свободу силе сжатия. Такая последовательность повторяется каждый раз, когда сначала ионизируется весь водород, а затем наступает черед ионизации гелия. При температуре 10⁵ К газ ионизируется полностью, сжатие звезды останавливается, возникает гидростатическое равновесие объекта. Дальнейшая эволюция звезды будет происходить в соответствии с тепловой временной шкалой, гораздо медленнее и последовательнее.

Радиус протозвезды с момента начала формирования сокращается с 100 а.е. до ¼ а.е. Объект пребывает в середине газового облака. В результате аккреции частиц из внешних областей облака звездного газа масса звезды будет постоянно увеличиваться. Следовательно, температура внутри объекта будет расти, сопровождая процесс конвекции — перенос энергии от внутренних слоев звезды к ее внешнему краю. Впоследствии с ростом температуры в недрах небесного тела конвекция сменяется лучистым переносом, сдвигаясь к поверхности звезды. В этом момент светимость объекта стремительно увеличивается, растет и температура поверхностных слоев звездного шара.

Процессы конвекции и лучистый перенос во вновь образовавшейся звезде перед началом реакций термоядерного синтеза

К примеру, для звезд, у которых масса идентична массе нашего Солнца, сжатие протозвездного облака происходит всего за несколько сотен лет. Что касается финальной стадии образования объекта, то конденсация звездной материи растягивается уже на миллионы лет. Солнце движется к главной последовательности достаточно быстро, и этот путь займет сотню миллионов или миллиарды лет. Другими словами, чем больше масса звезды, тем больше промежуток времени, затрачиваемый на формирование полноценной звезды. Звезда с массой в 15М будет двигаться по пути к главной последовательности уже значительно дольше — порядка 60 тыс. лет.

Фаза главной последовательности

Несмотря на то, что некоторые реакции термоядерного синтеза запускаются при более низких температурах, основная фаза водородного горения стартует при температуре в 4 млн. градусов. С этого момента начинается фаза главной последовательности. В дело вступает новая форма воспроизводства звездной энергии — ядерная. Кинетическая энергия, высвобождаемая в процессе сжатия объекта, отходит на второй план. Достигнутое равновесие обеспечивает долгую и спокойную жизнь звезды, оказавшейся в начальной фазе главной последовательности.

Деление и распад атомов водорода в процессе термоядерной реакции, происходящей в недрах звезды

С этого момента наблюдение за жизнью звезды четко привязано к фазе главной последовательности, которая является важной частью эволюции небесных светил. Именно на этом этапе единственным источником звездной энергии является результат горения водорода. Объект пребывает в состоянии равновесия. По мере расхода ядерного топлива меняется только химический состав объекта. Пребывание Солнца в фазе главной последовательности продлится ориентировочно 10 млрд. лет. Столько времени потребуется, чтобы наше родное светило израсходовало весь запас водорода. Что касается массивных звезд, то их эволюция происходит быстрее. Излучая больше энергии, массивная звезда пребывает в фазе главной последовательности всего 10-20 млн. лет.

Менее массивные звезды горят на ночном небосклоне значительно дольше. Так, звезда с массой 0,25М будет пребывать в фазе главной последовательности десятки миллиардов лет.

Диаграмма Герцшпрунга – Рассела, оценивающая взаимосвязь спектра звезд с их светимостью. Точки на диаграмме – месторасположение известных звезд. Стрелки указывают смещение звезд от главной последовательности в фазы гигантов и белых карликов.

Чтобы представить эволюцию звезд, достаточно взглянуть на диаграмму, характеризующую путь небесного светила в главной последовательности. Верхняя часть графика выглядит менее насыщенной объектами, так как именно здесь сосредоточены массивные звезды. Это месторасположение объясняется их непродолжительным жизненным циклом. Из известных на сегодняшний день звезд некоторые имеют массу 70М. Объекты, масса которых превышает верхний предел — 100М, могут вообще не сформироваться.

У небесных светил, масса которых меньше 0,08М, нет возможности преодолеть критическую массу, необходимую для начала термоядерного синтеза и остаются всю свою жизнь холодными. Самые маленькие протозвезды сжимаются и образуют планетоподобные карлики.

Планетоподобный коричневый карлик в сравнении с нормальной звездой (наше Солнце) и планетой Юпитер

В нижней части последовательности сосредоточены объекты, где доминируют звезды с массой равной массе нашего Солнца и немногим больше. Мнимой границей между верхней и нижней части главной последовательности являются объекты, масса которых составляет – 1,5М.

Последующие этапы эволюции звезд

Каждый из вариантов развития состояния звезды определяется ее массой и отрезком времени, в течение которого происходит трансформация звездной материи. Однако Вселенная представляет собой многогранный и сложный механизм, поэтому эволюция звезд может идти другими путями.

Путешествуя по главной последовательности, звезда с массой, примерно равной массе Солнца, имеет три основных варианта маршрута:

  1. спокойно прожить свою жизнь и мирно почить в бескрайних просторах Вселенной;
  2. перейти в фазу красного гиганта и медленно стареть;
  3. перейти в категорию белых карликов, вспыхнуть сверхновой и превратиться в нейтронную звезду.

Возможные варианты эволюции протозвезд в зависимости от времени, химического состав объектов и их массы

После главной последовательности наступает фаза гиганта. К этому времени запасы водорода в недрах звезды полностью заканчиваются, центральная область объекта представляет собой гелиевое ядро, а термоядерные реакция смещаются к поверхности объекта. Под действием термоядерного синтеза оболочка расширяется, а вот масса гелиевого ядра растет. Обычная звезда превращается в красного гиганта.

Фаза гиганта и ее особенности

У звезд с небольшой массой плотность ядра становится колоссальной, превращая звездную материю в вырожденный релятивистский газ. Если масса звезды чуть больше 0,26М, рост давления и температуры приводит к началу синтеза гелия, охватывающего всю центральную область объекта. С этого момента температура звезды стремительно растет. Главная особенность процесса заключается в том, что вырожденный газ не имеет способности расширяться. Под воздействием высокой температуры увеличивается только скорость деления гелия, что сопровождается взрывной реакцией. В такие моменты мы можем наблюдать гелиевую вспышку. Яркость объекта увеличивается в сотни раз, однако агония звезды продолжается. Происходит переход звезды в новое состояние, где все термодинамические процессы происходят в гелиевом ядре и в разряженной внешней оболочке.

Строение звезды главной последовательности солнечного типа и красного гиганта с изотермическим гелиевым ядром и слоевой зоной нуклеосинтеза

Такое состояние является временным и не отличается устойчивостью. Звездная материя постоянно перемешивается, при этом значительная ее часть выбрасывается в окружающее пространство, образуя планетарную туманность. В центре остается горячее ядро, которое называется белым карликом .

Для звезд большой массы перечисленные процессы протекают не так катастрофически. На смену гелиевому горению приходит ядерная реакция деления углерода и кремния. В конце концов звездное ядро превратится в звездное железо. Фаза гиганта определяется массой звезды. Чем больше масса объекта, тем меньше температура в его центре. Этого явно недостаточно для запуска ядерной реакции деления углерода и других элементов.

Судьба белого карлика – нейтронная звезда или черная дыра

Оказавшись в состоянии белого карлика, объект пребывает в крайне неустойчивом состоянии. Прекратившиеся ядерные реакции приводят к падению давления, ядро переходит в состояние коллапса. Энергия, выделяемая в данном случае, расходуется на распад железа до атомов гелия, который дальше распадается на протоны и нейтроны. Запущенный процесс развивается со стремительной скоростью. Коллапс звезды характеризует динамический отрезок шкалы и занимает по времени долю секунды. Возгорание остатков ядерного топлива происходит взрывным образом, освобождая в доли секунды колоссальный объем энергии. Этого вполне достаточно, чтобы взорвать верхние слои объекта. Финальной стадией белого карлика является вспышка сверхновой.

Ядро звезды начинает схлопываться (слева). Схлопывание формирует нейтронную звезду и создает поток энергии во внешние слои звезды (в центре). Энергия, выделяемая в результате сброса внешних слоев звезды при вспышке сверхновой (справа).

Оставшееся сверхплотное ядро будет представлять собой скопление протонов и электронов, которые сталкиваясь друг с другом, образуют нейтроны. Вселенная пополнилась новым объектом — нейтронной звездой. Из-за высокой плотности ядро становится вырожденным, процесс коллапсирования ядра останавливается. Если бы масса звезды была достаточно большой, коллапс мог бы продолжаться до тех пор, пока остатки звездной материи не упадут окончательно в центре объекта, образуя черную дыру.

Объяснение финальной части эволюции звезд

Для нормальных равновесных звезд описанные процессы эволюции маловероятны. Однако существование белых карликов и нейтронных звезд доказывает реальное существование процессов сжатия звездной материи. Незначительное количество подобных объектов во Вселенной свидетельствует о скоротечности их существования. Финальный этап эволюции звезд можно представить в виде последовательной цепочки двух типов:

  • нормальная звезда — красный гигант – сброс внешних слоев – белый карлик;
  • массивная звезда – красный сверхгигант – взрыв сверхновой – нейтронная звезда или черная дыра – небытие.

Схема эволюции звезд. Варианты продолжения жизни звезд вне главной последовательности.

Объяснить с точки зрения науки происходящие процессы достаточно трудно. Ученые-ядерщики сходятся во мнении, что в случае с финальным этапом эволюции звезд мы имеем дело с усталостью материи. В результате длительного механического, термодинамического воздействия материя меняет свои физические свойства. Усталостью звездной материи, истощенной длительными ядерными реакциями, можно объяснить появление вырожденного электронного газа, его последующую нейтронизацию и аннигиляцию. Если все перечисленные процессы проходят от начала до конца, звездная материя перестает быть физической субстанцией – звезда исчезает в пространстве, не оставляя после себя ничего.

Межзвездные пузыри и газопылевые облака, являющиеся местом рождения звезд, не могут пополняться только за счет исчезнувших и взорвавшихся звезд. Вселенная и галактики находятся в равновесном состоянии. Постоянно происходит потеря массы, плотность межзвездного пространства уменьшается в одной части космического пространства. Следовательно, в другой части Вселенной создаются условия для образования новых звезд. Другими словами, работает схема: если в одном месте убыло определенное количество материи, в другом месте Вселенной такой же объем материи появился в другой форме.

В заключение

Изучая эволюцию звезд, мы приходим к выводу, что Вселенная представляет собой гигантский разряженный раствор, в котором часть материи трансформируется в молекулы водорода, являющегося строительным материалом для звезд. Другая часть растворяется в пространстве, исчезая из сферы материальных ощущений. Черная дыра в этом смысле является местом перехода всего материального в антиматерию. Постичь до конца смысл происходящего достаточно трудно, особенно если при изучении эволюции звезд делать ставку только на законы ядерной, квантовой физики и термодинамики. К изучению данного вопроса следует подключать теорию относительной вероятности, которая допускает искривление пространства, позволяющее трансформироваться одной энергии в другую, одного состояния в другое.


Федеральное агентство по образованию

ГОУ ВПО

Уфимская государственная академия экономики и сервиса

кафедра «Физика»

КОНТРОЛЬНАЯ РАБОТА

по дисциплине «Концепции современного естествознания»

на тему «Звёзды и их эволюция»

Выполнил: Лавриненко Р. С.

группа СЗ-12

Проверила: Алтайская А. В.

Уфа-2010

Введение…………………………………………………………………………...3

Этапы эволюции звёзд……………………………………………………………5

Характеристики и химический состав звёзд………………………...................11

Прогноз эволюции Солнца…………………………………………...................20

Источники тепловой энергии звёзд……………………………………….........21

Заключение…………………………………………………………..............

Литература…………………………………………………………………………

Введение

В ясную безлунную ночь невооруженным глазом над горизонтом можно видеть около 3000 звезд. И всякий раз, смотря на звездное небо, мы задаем себе вопрос - что же такое звезды? Поверхностный взгляд найдет сходство между звездами и планетами. Ведь и планеты при наблюдении простым глазом видны как светящиеся точки различной яркости. Однако уже за несколько тысячелетий до нас внимательные наблюдатели неба – пастухи и земледельцы, мореплаватели и участники караванных переходов – приходили к убеждению, что звезды и планеты – различные по своей природе явления. Планеты, так же как Луна и Солнце, изменяют свое положение на небе, перемещаются из одного созвездия в другое и за год успевают пройти значительный путь, а звезды неподвижны одна относительно другой. Даже глубокие старики видят очертания созвездий совершенно такими же, какими они их видели в детстве.

Звезды не могут принадлежать к Солнечной системе. Если бы они были примерно на таком же расстоянии, как и планеты, то невозможно было бы найти объяснение их видимой неподвижности. Естественно считать, что звезды тоже движутся в пространстве, но они далеки от нас, что видимое перемещение их ничтожно. Создается иллюзия неподвижности звезд. Но если звезды так далеки, то при видимой яркости, сравнимой с видимой яркостью планет, они должны изучать во много раз мощнее, чем планеты. Такой ход рассуждений приводил к мысли, что звезды – это тела, по своей природе сходные с Солнцем. Эту мысль отстаивал Джордано Бруно. Но окончательно вопрос разрешился после двух открытий. Первое сделал Галлей в 1718 г. Он показал условность традиционного названия «неподвижные звёзды». Чтобы уточнить постоянную прецессии, он сравнил современные ему каталоги звёзд с античными, и прежде всего с каталогом Гиппарха (около 129 г. до н. э.) - первым звёздным каталогом, который упоминается в исторических документах и с каталогом в «Альмагесте 1 » Птолемея (138 г. н. э). На фоне однородной картины, закономерного смещения всех звёзд, Галлей обнаружил удивительный факт: «Три звезды: …или Глаз Тельца Альдебаран, Сириус и Арктур прямо противоречили этому правилу». Так было открыто собственное движение звёзд. Оно получило окончательное признание в 70-е годы XVIII века, после измерения немецким астрономом Тобиасом Майером и английским астрономом Невилом Маскелайном собственных движений десятков звёзд. Второе открытие сделал в 1824 г. Йозеф Фраунгофер, произведя первые наблюдения спектров звезд. В дальнейшем, подробные исследования спектров звезд, привели к выводу, что звезды, как и Солнце, состоят из газа, имеющего высокую температуру, а также, что спектры всех звезд могут быть распределены на несколько классов и спектр Солнца принадлежит одному из этих классов. Из этого следует, что свет звезд имеет ту же природу, что и свет Солнца.

Солнце – одна из звезд. Это очень близкая к нам звезда, с которой Земля физически связана, вокруг которой она движется. Но звезд огромное множество, они имеют различный блеск, различный цвет, они излучают огромное количество энергии в пространство и поэтому теряя эту энергию, не могут не изменяться: они должны проходить какой-то путь эволюции.

Этапы эволюции звезд

Звезды – грандиозные плазменные системы, в которых физические характеристики, внутреннее строение и химический состав изменяются со временем. Время звездной эволюции очень велико, и не возможно непосредственно проследить эволюцию той или иной конкретной звезды. Это компенсируется тем, что каждая из множества звезд на небе проходит некоторый этап эволюции. Суммируя наблюдения, можно восстановить общую направленность звездной эволюции (по диаграмме Герцшпрунга – Рессела (Рисунок 1) она отображается главной последовательностью и отступлением от нее вверх и вниз).

Pисунок 1. Диаграмма Герцшпрунга-Рассела

На диаграмме Герцшпрунга-Рассела звезды распределены неравномерно. Около 90% звезд сконцентрировано в узкой полосе, пересекающей диаграмму по диагонали. Эту полосу называют главной последовательностью. Её верхний конец расположен в области ярких голубых звезд. Различие в заселенности звезд, находящихся на главной последовательности и областей, примыкающих к главной последовательности, составляет несколько порядков величины. Причина в том, что на главной последовательности находятся звезды на стадии горения водорода, которая составляет основную часть времени жизни звезды. Солнце находится на главной последовательности. Следующие по населенности области после главной последовательности - белые карлики, красные гиганты и красные сверх-гиганты. Красные гиганты и сверхгиганты - это в основном звезды на стадии горения гелия и более тяжелых ядер.

Современная теория строения и эволюции звезд объясняет общий ход развития звезд в хорошем согласии с данными наблюдения.

Основные фазы в эволюции звезды – ее рождение (звездообразование); длительный период (обычно стабильного) существования звезды как целостной системы, находящейся в гидродинамическом и тепловом равновесии; и, наконец, период ее «смерти», т.е. необратимое нарушение равновесия, которое ведет к разрушению звезды или к ее катастрофическому сжатию.

Согласно общепринятой гипотезе газопылевого облака звезда зарождается в результате гравитационного сжатия межзвездного газопылевого облака. По мере уплотнения такого облака сначала образуется протозвезда, температура в ее центре неуклонно растет, пока не достигает предела, необходимого для того, чтобы скорость теплового движения частиц превысила порог, после которого протоны способны преодолеть макроскопические силы взаимного электростатического отталкивания и вступить в реакцию термоядерного синтеза.

В результате многоступенчатой реакции термоядерного синтеза из четырех протонов в конечном итоге образуется ядро гелия (2 протона + 2 нейтрона) и выделяется целый фонтан разнообразных элементарных частиц. В конечном состоянии суммарная масса образовавшихся частиц меньше массы четырех исходных протонов, а значит, в процессе реакции выделяется свободная энергия. Из-за этого внутренне ядро новорожденной звезды быстро разогревается до сверхвысоких температур, и его избыточная энергия начинает выплескиваться по направлению к ее менее горячей поверхности - и наружу. Одновременно давление в центре звезды начинает расти. Таким образом, «сжигая» водород в процессе термоядерной реакции, звезда не дает силам гравитационного притяжения сжать себя до сверхплотного состояния, противопоставляя гравитационному коллапсу непрерывно возобновляемое внутреннее термическое давление, в результате чего возникает устойчивое энергетическое равновесие. О звездах на стадии активного сжигания водорода говорят, что они находятся на «основной фазе» своего жизненного цикла или эволюции. Превращение одних химических элементов в другие внутри звезды называют ядерным синтезом или нуклеосинтезом.

В частности, Солнце находится на активной стадии сжигания водорода в процессе активного нуклеосинтеза уже около 5 миллиардов лет, и запасов водорода в ядре для его продолжения нашему светилу должно хватить еще на 5,5 миллиардов лет. Чем массивнее звезда, тем большим запасом водородного топлива она располагает, но для противодействия силам гравитационного коллапса ей приходится сжигать водород с интенсивностью, превосходящей по темпу роста темп роста запасов водорода по мере увеличения массы звезды. Для звезд с массой, превышающей солнечную массу в 15 раз, время стабильного существования оказывается всего около 10 млн лет. Это крайне незначительное время по космическим меркам, ведь время, отведенное для нашего Солнца, на 3 порядка выше – около 10 млрд лет.

Рано или поздно, любая звезда израсходует весь пригодный для сжигания в своей термоядерной топке водород. Это также зависит от массы звезды. Солнце (и все звезды, не превышающие его по массе более чем в восемь раз) заканчиваю свою жизнь весьма банальным образом. По мере истощения запасов водорода в недрах звезды силы гравитационного сжатия, терпеливо ожидавшие этого часа с самого момента зарождения светила, начинают одерживать верх - и под их воздействием звезда начинает сжиматься и уплотняться. Этот процесс приводит к двоякому эффекту: Температура в слоях непосредственно вокруг ядра звезды повышается до уровня, при котором содержащийся там водород вступает, в реакцию термоядерного синтеза с образованием гелия. В то же время температура в самом ядре, состоящем теперь практически из одного гелия, повышается настолько, что уже сам гелий - своего рода «пепел» затухающей первичной реакции нуклеосинтеза - вступает в новую реакцию термоядерного синтеза: из трех ядер гелия образуется одно ядро углерода. Этот процесс вторичной реакции термоядерного синтеза, топливом для которого служат продукты первичной реакции, - один из ключевых моментов жизненного цикла звезд.

При вторичном сгорании гелия в ядре звезды выделяется так много энергии, что звезда начинает буквально раздуваться. В частности, оболочка Солнца на этой стадии жизни расширится за пределы орбиты Венеры. При этом совокупная энергия излучения звезды остается примерно на том же уровне, что и в течение основной фазы ее жизни, но, поскольку излучается эта энергия теперь через значительно большую площадь поверхности, внешний слой звезды остывает до красной части спектра. Звезда превращается в красный гигант.

Для звезд класса Солнца после истощения топлива, питающего вторичную реакцию нуклеосинтеза, снова наступает стадия гравитационного коллапса - на этот раз окончательного. Температура внутри ядра больше не способна подняться до уровня, необходимого для начала термоядерной реакции следующего уровня. Поэтому звезда сжимается до тех пор, пока силы гравитационного притяжения не будут уравновешены следующим силовым барьером. В его роли выступает давление вырожденного электронного газа. Электроны, до этой стадии игравшие роль безработных статистов в эволюции звезды, не участвуя в реакциях ядерного синтеза и свободно перемещаясь между ядрами, находящимися в процессе синтеза, на определенной стадии сжатия оказываются лишенными «жизненного пространства» и начинают «сопротивляться» дальнейшему гравитационному сжатию звезды. Состояние звезды стабилизируется, и она превращается в вырожденного белого карлика, который будет излучать в пространство остаточное тепло, пока не остынет окончательно.

Звезды более массивные, нежели Солнце, ждет куда более зрелищный конец. После сгорания гелия их масса при сжатии оказывается достаточной для разогрева ядра и оболочки до температур, необходимых для запуска следующих реакций нуклеосинтеза - углерода, затем кремния, магния - и так далее, по мере роста ядерных масс. При этом при начале каждой новой реакции в ядре звезды предыдущая продолжается в ее оболочке. На самом деле, все химические элементы вплоть до железа, из которых состоит Вселенная, образовались именно в результате нуклеосинтеза в недрах умирающих звезд этого типа. Но железо - это предел; оно не может служить топливом для реакций ядерного синтеза или распада ни при каких температурах и давлениях, поскольку как для его распада, так и для добавления к нему дополнительных нуклонов необходим приток внешней энергии. В результате массивная звезда постепенно накапливает внутри себя железное ядро, не способное послужить топливом ни для каких дальнейших ядерных реакций.

Как только температура и давление внутри ядра достигают определенного уровня, электроны начинают вступать во взаимодействие с протонами ядер железа, в результате чего образуются нейтроны. И за очень короткий отрезок времени (некоторые теоретики полагают, что на это уходят считанные секунды) свободные, на протяжении всей предыдущей эволюции звезды, электроны буквально растворяются в протонах ядер железа. Всё вещество ядра звезды превращается в сплошной сгусток нейтронов и начинает стремительно сжиматься в гравитационном коллапсе, поскольку противодействовавшее ему давление вырожденного электронного газа падает до нуля. Внешняя оболочка звезды, из под которой выбита всякая опора, обрушивается к центру. Энергия столкновения обрушившейся внешней оболочки с нейтронным ядром столь высока, что она с огромной скоростью отскакивает и разлетается во все стороны от ядра - и звезда буквально взрывается в ослепительной вспышке сверхновой звезды. За считанные секунды при вспышке сверхновой может выделиться в пространство больше энергии, чем выделяют за это же время все звезды галактики вместе взятые.

После вспышки сверхновой и разлета оболочки, у звезд массой порядка 10-30 солнечных масс, продолжающийся гравитационный коллапс приводит к образованию нейтронной звезды, вещество которой сжимается до тех пор, пока не начинает давать о себе знать давление вырожденных нейтронов. Иными словами, теперь уже нейтроны (подобно тому, как ранее это делали электроны) начинают противиться дальнейшему сжатию, требуя себе жизненного пространства. Это обычно происходит по достижении звездой размеров около 15 км в диаметре. В результате образуется быстро вращающаяся нейтронная звезда, испускающая электромагнитные импульсы с частотой ее вращения; такие звезды называются пульсарами. Наконец, если масса ядра звезды превышает 30 солнечных масс, ничто не в силах остановить ее дальнейший гравитационный коллапс, и в результате вспышки сверхновой образуется черная дыра.

Из глобул возникают звёзды , вспомним, что все звёзды излучают и их излучение оказывает... то период обращения обеих звёзд относительно их общего центра тяжести равен... последних этапах своей эволюции теряют устойчивость. Такие звёзды могут взорваться как...

  • Эволюция звезд (6)

    Реферат >> Биология

    Диаграмму зависимости светимостей звёзд от их спектральных классов (диаграмма... , в окрестности Солнца большинство звёзд сконцентрированы вдоль сравнительно узкой полосы... разных расстояниях. Звезды эволюционируют, и их эволюция необратима, так как все в...

  • Эволюция газеты в России

    Реферат >> Журналистика

    Введение............................................................................................................3 Глава I. Эволюция газеты в России в... которого, лишив трёх звёзд Героя Социалистического Труда... протяжении всего пути их эволюции , который не...

  • Созерцая ясное ночное небо вдали от городских огней, нетрудно заметить что Вселенная полна звезд. Каким образом природе удалось создать несметное число этих объектов? Ведь по оценкам только в Млечном Пути около 100 млрд. звезд. Кроме того, звезды рождаются и поныне, 10-20 млрд. лет спустя после образования Вселенной. Как образуются звезды? Каким изменениям подвергается звезда, прежде чем она достигнет устойчивого состояния, как у нашего Солнца?

    С точки зрения физики, звезда — это газовый шар

    С точки зрения физики, — это газовый шар. Теплота и давление генерируемые в ядерных реакциях — главным образом в реакциях синтеза гелия из водорода — предотвращают сжатие звезды под действием собственной гравитации. Жизнь этого относительно простого объекта проходит по вполне определенному сценарию. Сначала происходит рождение звезды из диффузного облака межзвездного газа, потом идет долгое светопреставление. Но в конце концов, когда все ядерное топливо будет исчерпано, она превратится в слабосветящийся белый карлик, нейтронную звезду или черную дыру.


    Это описание может создать впечатление, что детальный анализ образования и ранних стадий эволюции звезд не должен вызывать существенных трудностей. Но взаимодействие гравитации и теплового давления приводит к тому, что звезды ведут себя непредсказуемым образом.
    Рассмотрим, например, эволюцию светимости, то есть изменение количества энергии, испускаемое звездной поверхностью в единицу времени. Внутренняя температура молодой звезды слишком мала для слияния атомов ядер водорода, поэтому ее светимость должна быть относительно низкой. Она может возрасти, когда начнутся ядерные реакции, и лишь потом может постепенно падать. На самом деле очень молодая звезда чрезвычайно яркая. Ее светимость уменьшается с возрастом, достигая временного минимума во время горения водорода.

    На ранних стадиях эволюции в звездах происходят разнообразные физические процессы

    На ранних стадиях эволюции в звездах происходят разнообразные физические процессы, некоторые из которых еще плохо поняты. Только в последние два десятилетия астрономы начали строить детальную картину эволюции звезд на основе достижений.теории и наблюдений.
    Звезды рождаются из больших не наблюдаемых в видимом свете облаков, расположенных в дисках спиральных галактик. Эти объекты астрономы называют гигантскими молекулярными комплексами. Термин «молекулярный» отражает тот факт, что газ в комплексах в основном состоит из водорода в молекулярной форме. Такие облака — самые большие образования в Галактике, иногда достигают более 300 св. лет в поперечнике.

    При более тщательном анализе эволюции звезды

    При более тщательном анализе обнаруживается, что звезды образуются из отдельных конденсаций — компактных зон -в гигантском молекулярном облаке. Астрономы исследовали свойства компактных зон с помощью больших радиотелескопов — единственных инструментов, способных регистрировать слабое миллимоблаков. Из наблюдений этого излучения следует, что типичная компактная зона имеет диаметр несколько световых месяцев, плотность 30000 молекул водорода на 1 см^ и температуру 10 Кельвинов.
    На основе этих значений был сделан вывод, что давление газа в компактных зонах таково, что оно может противостоять сжатию под действием сил самогравитации.

    Поэтому, чтобы образовалась звезда, компактная зона должна сжиматься из неустойчивого состояния, причем такого, чтобы силы гравитации превышали внутреннее газовое давление.
    Пока еще не ясно, как компактные зоны конденсируются из исходного молекулярного облака и приобретают такое неустойчивое состояние. Тем не менее еще до открытия компактных зон у астрофизиков была возможность смоделировать процесс звездообразования. Уже в 60-х годах теоретики использовали компьютерное моделирование, чтобы определить, как происходит сжатие облаков в неустойчивом состоянии.
    Хотя для теоретических расчетов использовался широкий диапазон начальных условий, полученные результаты совпадали: у слишком неустойчивого облака сжимается сначала внутренняя часть, то есть свободному падению подвергаются сначала вещество в центре, а периферийные области остаются стабильными. Постепенно область сжатия распространяется наружу, охватывая все облако.

    Глубоко в недрах сжимающийся области начинается эволюция звезд

    Глубоко в недрах сжимающийся области начинается звездообразование. Диаметр звезды -всего лишь одна световая секунда, т. е. одна миллионная поперечника компактной зоны. Для таких относительно малых размеров общая картина сжатия облака не существенна, а главную роль здесь играет скорость падения вещества на звезду

    Скорость падения вещества может быть разной, но она в прямую зависит от температуры облака. Чем выше температура, тем больше скорость. Вычисления показывают, что масса, равная массе Солнца, может накапливаться в центре сжимающейся компактной зоны за время от 100 тыс. до 1 млн. лет.Тело, образующееся в центре коллапсирующе-го облака, называют протозвездой. С помощью компьютерного моделирования астрономы разработали модель, описывающую строение протозвезды.
    Оказалось, что падающий газ ударяется о поверхность протозвезды с очень высокой скоростью. Поэтому образуется мощный ударный фронт (резкий переход к очень высокому давлению). В пределах ударного фронта газ нагревается почти до 1 млн. Кельвинов, затем при излучении у поверхности быстро охлаждается примерно ло 10000 К, образуя слой за слоем протозвезду.

    Наличием ударного фронта объясняется высокая яркость молодых звезд

    Наличием ударного фронта объясняется высокая яркость молодых звезд. Если масса протоз-везды равна одной солнечной, то ее светимость может превышает солнечную в десять раз. Но она обусловлена не реакциями термоядерного синтеза, как у обычных звезд, а кинетической энергией вещества, приобретаемой в поле гравитации.
    Протозвезды можно наблюдать, но не с помощью обычных оптических телескопов.
    Весь межзвездный газ, в том числе и тот, из которого образуются звезды, содержит в себе «пыль» — смесь твердых частиц субмикронных размеров. Излучение ударного фронта встречает на своем пути большое число этих частиц, падающих вместе с газом на поверхность протозвезды.
    Холодные пылевые частицы поглощают фотоны, испускаемые ударным фронтом, и переизлучают их более длинноволновыми. Это длинноволновое излучение в свою очередь поглощается, а затем переизлучается еще более удаленной пылью. Поэтому пока фотон прокладывают свой путь сквозь облака пыли и газа, его длина волны оказывается в инфракрасном диапазоне электромагнитного спектра. Но уже на расстоянии нескольких световых часов от протозвезды длина волны фотона становится слишком велика, так что пыль не может его поглотить, и он, наконец, может беспрепятственно мчаться к земным телескопам, чувствительным к инфракрасному излучению.
    Несмотря на широкие возможности современных детекторов, астрономы не могут утверждать, что телескопы действительно регистрируют излучение протозвезд. По-видимому они глубоко спрятаны в недрах компактных зон, зарегистрированных в радиодиапазоне. Неопределенность в регистрации связана с тем, что детекторы не могут отличить протозвезду от более старших звезд, вкрапленных в газ и пыль.
    Для надежного отождествления инфракрасный или радиотелескоп должен обнаружить доплеровское смещение спектральных линий излучения протозвезды. Доплеровское смещение показало бы истинное движение газа, падающего на ее поверхность.
    Как только в результате падения вещества масса протозвезды достигает нескольких десятых массы Солнца, температура в центре становится достаточной для начала реакций термоядерного синтеза. Однако термоядерные реакции в протозвездах коренным образом отличаются от реакций в звездах среднего «возраста». Источником энергии таких звезд являются реакции термоядерного синтеза гелия из водорода.

    Водород — самый распространенный химический элемент во Вселенной

    Водород — самый распространенный химический элемент во Вселенной. При рождении Вселенной (Большом взрыве) этот элемент образовался в обычной форме с ядром, состоящим из одного протона. Но два из каждых 100000 ядер являются ядрами дейтерия, состоящими из протона и нейтрона. Этот изотоп водорода присутствует в современную эпоху в межзвездном газе, из которого он попадает в звезды.
    Примечательно, что эта мизерная примесь играет доминирующую роль в жизни протозвезд. Температура в их недрах недостаточна для реакций обычного водорода, которые происходят при 10 млн. Кельвинов. Но в результате гравитационного сжатия температура в центре протозвезды легко может достичь 1 млн. Кельвинов, когда начинается слияние ядер дейтерия, при которых также выделяется колоссальная энергия.

    Непрозрачность протозвездного вещества слишком велика

    Непрозрачность протозвездного вещества слишком велика, чтобы эта энергия передавалась путем лучистого переноса. Поэтому звезда становится конвективно неустойчивой: нагретые на «ядерном огне» пузыри газа всплывают к поверхности. Эти восходящие потоки уравновешиваются нисходящими к центру потоками холодного газа. Подобные конвективные движения, но в гораздо меньших масштабах, имеют место в комнате с паровым отоплением. В протозвезде конвективные вихри переносят дейтерий с поверхности в ее недра. Таким образом топливо, необходимое для термоядерных реакций, достигает ядра звезды.
    Несмотря на очень низкую концентрацию ядер дейтерия, выделяющееся при их слиянии тепло оказывает сильное влияние на протозвезду. Главным следствием реакций горения дейтерия является «разбухание» протозвезды. Из-за эффективного переноса тепла путем конвекции в результате «горения» дейтерия протозвезда увеличивается в размерах, который зависит от ее массы. Протозвезда одной солнечной массы имеет радиус, равный пяти солнечным. При массе, равной трем солнечным, протозвезда раздувается до радиуса, равного 10 солнечным.
    Масса типичной компактной зоны больше массы порождаемой ее звезды. Поэтому должен существовать некоторый механизм, удаляющий излишнюю массу и прекращающий падение вещества. Большинство астрономов убеждены, что за это ответственен сильный звездный ветер, вырывающийся с поверхности протозвезды. Звездный ветер сдувает падающий газ в обратном на-правлении и в конце концов рассеивает компактную зону.

    Идея звездного ветра

    Из теоретических расчетов «идея звездного ветра» не следует. И удивленным теоретикам были предоставлены свидетельства этого явления: наблюдения потоков молекулярного газа, движущихся от инфракрасных источников излучения. Эти потоки связаны с протозвездным ветром. Его происхождение одна из самых глубоких тайн молодых звезд.
    Когда рассеивается компактная зона, обнажается объект, который можно наблюдать в оптическом диапазоне — молодая звезда. Как и протозвезда, она имеет высокую светимость, которая в большей мере определяется гравитацией, чем термоядерным синтезом. Давление в недрах звезды предотвращает катастрофический гравитационный коллапс. Однако тепло, ответственное за это давление, излучается со звездной поверхности, поэтому звезда очень ярко светит и медленно сжимается.
    По мере сжатия ее внутренняя температура постепенно растет и в конце концов достигает 10 млн. Кельвинов. Тогда начинаются реакции слияния ядер водорода с образованием гелия. Выделяемое тепло создает давление, препятствующее сжатию, и звезда долго будет светить, пока в ее недрах не закончится ядерное топливо.
    Нашему Солнцу, типичной звезде, потребовалось около 30 млн. лет на сжатие от протозвездных до современных размеров. Благодаря теплу, выделяемому при термоядерных реакциях, оно сохраняет эти размеры уже в течение примерно 5 млрд. лет.
    Так рождаются звезды. Но несмотря на столь явные успехи ученых, позволивших нам узнать одну из многих тайн мироздания, еще многие известные свойства молодых звезд пока полностью не понятны. Это относится к их неправильной переменности, колоссальному звездному ветру, неожиданным ярким вспышкам. На эти вопросы еще нет уверенных ответов. Но эти нерешенные проблемы следует рассматривать как разрывы в цепи, основные звенья которой уже спааяны. И нам удастся замкнуть эту цепь и завершить биографию молодых звезд, если мы найдем ключ, созданный самой природой. И этот ключ мерцает в ясном небе над нами.

    Рождение звезды видео: