Методы тестирования физической работоспособности. Современные методы исследования и оценки физической работоспособности Физическое тестирование

Согласно программе, разработанной Международным комитетом по стандартизации тестов физической готовности, определение работоспособности должно проходить по четырем направлениям:

1. медицинский осмотр;

2. определение физиологических реакций разных систем организма на физическую нагрузку;

3. определение телосложения и состав тела в корреляции с физической работоспособностью;

4. определение способности к выполнению физических нагрузок и движений в комплексе упражнений, совершение которых зависит от разных систем организма.

Целью тестирования на занятиях физической культурой и спортом является оценка функционального состояния систем организма и уровня физической работоспособности (тренированности).

Под тестированием следует понимать реакцию отдельных систем и органов на определенные воздействия (характер, тип и выраженность этой реакции). Оценка результатов тестирования может быть как качественной, так и количественной.

Для оценки функционального состояния организма могут быть использованы различные функциональные пробы.

1. Пробы с дозированной физической нагрузкой: одно-, двух-, трех- и четырехмоментные.

2. Пробы с изменением положения тела в пространстве: ортостатическая, клиностатическая, клиноортостатическая.

3. Пробы с изменением внутригрудного и внутрибрюшного давления: проба с натуживанием (Вальсальвы).

4. Гипоксемические пробы: пробы с вдыханием смесей, содержащих различное соотношение кислорода и углекислоты, задержка дыхания и другие.

5. Фармакологические, алиментарные, температурные и др.

Помимо этих функциональных проб используются также специфические пробы с нагрузкой, характерной для каждого вида двигательной деятельности.

Физическая работоспособность - интегральный показатель, позволяющий судить о функциональном состоянии различных систем организма и, в первую очередь, о производительности аппарата кровообращения и дыхания. Она прямо пропорциональна количеству внешней механической работы, выполняемой с высокой интенсивностью.

Для определения уровня физической работоспособности могут быть использованы тесты с максимальной и субмаксимальной нагрузкой: максимальное потребление кислорода (МПК), PWC170, Гарвардский степ-тест и др.

1. Определение уровня физической работоспособности по тесту PWC170

Для работы необходимы: велоэргометр (или ступенька, или беговая дорожка), секундомер, метроном.

Тест PWC170 основан на закономерности, заключающейся в том, что между частотой сердечных сокращений (ЧСС) и мощностью физической нагрузки существует линейная зависимость. Это позволяет определить величину механической работы, при которой ЧСС достигает 170, путем построения графика и линейной экстраполяции данных, либо путем расчета по формуле, предложенной В. Л. Карпманом ЧСС, равная 170 ударам в минуту, соответствует началу зоны оптимального функционирования кардиореспираторной системы. Кроме того с этой ЧСС нарушается линейный характер взаимосвязи ЧСС и мощности физической работы.

Нагрузка может быть выполнена на велоэргометре, на ступеньке (степ-тест), а также в виде специфической для конкретного вида спорта.

Вариант № 1 (с велоэргометром).

Испытуемый последовательно выполняет две нагрузки в течение 5 мин. с 3-минутным интервалом отдыха между ними. В последние 30 сек. пятой минуты каждой нагрузки подсчитывается пульс (пальпаторно или электрокардиографическим методом).

Мощность первой нагрузки (N1) подбирается по таблице в зависимости от веса тела обследуемого с таким расчетом, чтобы в конце 5-й минуты пульс (f1) достигал 110...115 уд./мин.

Мощность второй (N2) нагрузки определяется по табл. 7 в зависимости от величины N1. Если величина N2 правильно подобрана, то в конце пятой минуты пульс (f2) должен составить 135...150 уд./мин.

Таблица Ориентировочные значения мощности второй нагрузки рекомендуемые при определении PWC170

Мощность работы при первой нагрузке, кгм/мин

Мощность, кгм/мин (N2)

ЧСС N1 уд/мин

Для точности определения N2 можно воспользоваться формулой:

N2 = N1 ·

где N1 - мощность первой нагрузки,

N2 - мощность второй нагрузки,

f1 - ЧСС в конце первой нагрузки,

f2 - ЧСС в конце второй нагрузки.

Затем по формуле вычисляют PWC170:

PWC170 = N1 + (N2 - N1) · [(170 - f1) / (f2 - f1)]

Величину PWC170 можно определить графически (рис. 3).

Для увеличения объективности в оценке мощности выполненной работы при ЧСС, равной 170 уд/мин, следует исключить влияние весового показателя, что возможно путем определения относительного значения PWC170. Значение PWC170 делят на вес испытуемого, сравнивают с аналогичным значением по виду спорта (табл. 8), дают рекомендации.

Рисунок Определение физической работоспособности по тесту PWC170 методом графической экстраполяции

Вариант № 2. Определение величины PWC170 с помощью степ-теста.

Принцип работы такой же как в работе № 1. Скорость восхождения на ступеньку при выполнении первой нагрузки составляет 3...12 подъемов в минуту, при второй - 20...25 подъемов в минуту. Каждое восхождение производится на 4 счета на ступеньку высотой 40-45 см: на 2 счета подъем и на следующие 2 счета - спуск. 1-я нагрузка - 40 шагов в минуту, 2-я нагрузка 90 (на эти цифры устанавливают метроном).

Пульс подсчитывается за 10 сек, в конце каждой 5-минутной нагрузки.

Мощность выполняемых нагрузок определяется по формуле:

N = 1,3 h · n · P,

где h - высота ступеньки в м, n - количество подъемов в мин,

P - вес тела. обследуемого в кг, 1,3 - коэффициент.

Затем по формуле вычисляют величину PWC170 (см. вариант № 1).

Вариант № 3. Определение величины PWC170 с помещаю специфических нагрузок (например, бега).

Для определения физической работоспособности по тесту PWC170 (V) со специфическими нагрузками необходима регистрация двух показателей: скорости движения (V) и частоты сердечных сокращений (f).

Для определения скорости движения требуется по секундомеру точно зафиксировать длину дистанции (S в м) и длительность каждой физической нагрузки (f в сек.)

где V - скорость движения в м/с.

Частота сердечных сокращений определяется в течение первых 5 сек. восстановительного периода после бега пальпаторным или аускультативным методом.

Первый забег выполняется в темпе "бега трусцой" со скоростью, равной 1/4 от максимально возможной для данного спортсмена (примерно каждые 100 м за 30-40 сек).

После 5-минутного отдыха выполняется вторая нагрузка со скоростью равной 3/4 от максимальной, т. е. за 20-30 сек. каждые 100 м.

Длина дистанции 800-1500 м.

Расчет PWC170 производится по формуле:

PWC170 (V) = V1 + (V2 - V1) · [(170 - f1) / (f2 - f1)]

где V1 и V2 - скорость движения в м/с,

f1 и f2 - частота.пульса после какого забега.

2. Определение максимального потребления кислорода (МПК)

МПК выражает предельную для данного человека "пропускную" способность системы транспорта кислорода и зависит от пола, возраста, физической подготовленности и состояния организма.

В среднем МПК у лиц с разным физическим состоянием достигает 2,5...4,5 л/мин, в циклических видах спорта - 4,5...6,5 л/мин.

Способы определения МПК: прямой и непрямой. Прямой метод определения МПК основан на выполнении спортсменом нагрузки, интенсивность которой равна или больше его критической мощности. Он небезопасен для обследуемого, так как связан с предельным напряжением функций организма. Чаще пользуются непрямыми методами определения, основанными на косвенных расчетах, использовании небольшой мощности нагрузки. К косвенным методам определения МПК относятся метод Астранда; определение по формуле Добельна; по величине PWC170 и др.

Вариант № 1. Определение МПК по методу Астранда.

Для работы необходимы: велоэргометр, ступеньки высотой 40 см и 33 см, метроном, секундомер, номограмма Астранда.

На велоэргометре обследуемый выполняет 5-минутную нагрузку определенной мощности. Величина нагрузки подбирается с таким расчетом, чтобы частота пульса в конце работы достигала 140-160 уд./мин (примерно 1000-1200 кгм/мин). Пульс подсчитывается в конце 5-й минуты в течение 10 сек. пальпаторным, аускультативным или электрокардиографическим методом. Затем по номограмме Астранда (рис. 4) определяют величину МПК, для чего, соединив линией ЧСС во время нагрузки (шкала слева) и вес тела обследуемого (шкала справа), находят в точке пересечения с центральной шкалой величину МПК.

Вариант № 2. Определение МПК по степ-тесту.

Испытуемый в течение 5 минут производит восхождение на ступеньку высотой 40 см для мужчин и 33 см для женщин со скоростью 25,5 цикла, в 1 минуту. Метроном устанавливается на частоту 90.

В конце 5-й минуты в течение 10 сек. регистрируется частота пульса. Величина МПК определяется по номограмме Астранда и сравнивается с нормативом со спортивной специализации. Учитывая, что МПК зависит от веса тела, вычислить относительную величину МПК (МПК/вес) и сравнить со средними данными, написать заключение и дать рекомендации.

Вариант № 3. Определение МПК по величине PWC170.

Ррасчет МПК производится с помощью формул, предложенных В. Л. Карпманом:

МПК = 2,2 PWC170 + 1240

Для спортсменов, специализирующихся в скоростно-силовых видах спорта;

МПК = 2,2 PWC170 + 1070

Для спортсменов, тренирующихся на выносливость.

Вариант № 4. Определение работоспособности по тесту Купера

Тест Купера заключается в пробегании максимально возможного расстояния по ровной местности (стадион) за 12 мин.

При возникновении признаков переутомления (резкая одышка, тахиаритмия, головокружение, боли в сердце и др.) тест прекращается.

Результаты теста, соответствуют величине МПК, определяемой на беговой дорожке.

Тест Купера можно использовать при отборе школьников в секции по циклическим видам спорта, в ходе тренировок для оценки состояния тренированности.


Вариант № 5. Тест Новакки (максимальный тест).

Цель: определить время, в течение которого испытуемый способен выполнять работу с максимальным усилием.

Необходимое оборудование: велоэргометр, секундомер.

Испытуемый выполняет нагрузку на велоэргометре из расчета 1 Вт/кг в течение 2-х минут. Каждые 2 минуты нагрузка возрастает на 1 Вт/кг до достижения предельной величины.

Оценка результата. Высокая работоспособность по этому тесту соответствует величине 6 Вт/кг, при выполнении ее в течение 1 мин. Хороший результат соответствует значению 4-5 Вт/кг в течение 1-2 мин.

Данный тест может быть применен для тренированных лиц (в том числе в юношеском спорте), для нетренированных и лиц в периоде рековалесценции после болезни. В последнем случае начальная нагрузка устанавливается из расчета 0,25 Вт/кг.

3. Определение уровня физической работоспособности по Гарвардскому степ-тесту (ГСТ)

Оценка физической работоспособности производится по величине индекса ГСТ (ИГСТ) и основана на скорости восстановления ЧСС после восхождения на ступеньку.

Для работы необходимы: ступеньки различной высоты, метроном, секундомер.

Далее обследуемый выполняет 10-12 приседаний (разминка), после чего начинает восхождение на ступеньку со скоростью 30 циклов в 1 мин. Метроном устанавливается на частоту 120 уд/мин, подъем и спуск состоит из 4-х движений, каждому из которых будет соответствовать удар метронома: на 2 удара - 2 шага подъем, на 2 удара - 2 шага спуск.

Восхождение и спуск всегда начинаются с одной и той же ноги.

Если обследуемый из-за усталости отстает от ритма в течение 20 сек., тестирование прекращается и фиксируется время работы в заданном темпе.

Таблица Высота ступеньки время восхождения в зависимости от пола и возраста (по И. Аулику)


Примечание. S обозначает поверхность тела обследуемого (м2) и определяется по формуле:

S = 1 + (Р ± DН) / 100

где S - поверхность тела; Р - вес тела;

DН - отклонение роста обследуемого от 160 см. с соответствующим знаком.

После окончания работы в течение 1 мин. восстановительного периода испытуемый, сидя, отдыхает. Начиная со 2-й минуты восстановительного периода, за первые 30 сек. на 2, 3 и 4-й минутах измеряется пульс.

ИГСТ вычисляется по формуле:

ИГСТ = (t · 100) / [(f1 + f2 + f3)· 2]

где t - длительность восхождения, в сек.

f1, f2, f3 - частота пульса, за 30 сек. на 2, 3 и 4-й минуте восстановительного периода соответственно.

В случае, когда обследуемый из-за утомления раньше времени прекращает восхождение, расчет ИГСТ производится по сокращенной формуле:

ИГСТ = (t · 100) / (f1 · 5,5)

где t - время выполнения теста, в сек.,

f1 - частота пульса за 30 сек. на 2-й минуте восстановительного периода.

При большом числе обследуемых для определения ИГСТ можно использовать табл. 12, 13, для чего в вертикальном столбце (десятки) находят сумму трех подсчетов пульса (f1 + f2 + f3) в десятках, в верхней горизонтальной строке - последнюю цифру суммы и в месте пересечения - значение ИГСТ. Затем по нормативам (оценочным таблицам) оценивается физическая работоспособность.

Определение ИГСТ по сокращенной формуле у взрослых мужчин


4. Модифицированная ортостатическая проба

Цель: оценить состояние ортостатической устойчивости организма.

Ортостатическая проба используется для выявления состояния скрытой ортостатической неустойчивости и в целях контроля за динамикой состояния тренированности в сложнокоординационных видах спорта. Проба основана на. том, что при переходе из горизонтального положения в вертикальное в связи с изменением гидростатических условий уменьшается первичный венозный возврат крови к правому отделу сердца, вследствие чего возникает недогрузка сердца объемом и уменьшение систолического объема крови. Чтобы поддержать минутный объем крови на должном уровне рефлекторно учащается ЧСС (на 5-15 уд. в мин.).

При патологических состояниях, перетренированности, перенапряжении, после инфекционных заболеваний, либо при врожденной ортостатической неустойчивости депонирующая роль венозной системы оказывается столь значительной, что изменение положения тела приводит к головокружению, потемнению в глазах, вплоть до обморока. В этих условиях компенсаторного учащения ЧСС оказывается недостаточным, хотя оно значительно.

Для работы необходимы: кушетка, сфигмоманометр, фонендоскоп, секундомер.

Результаты сопоставить с рекомендуемыми, разработать способы оптимизации ортостатической устойчивости средствами физического воспитания. После предварительного отдыха в течение 5 мин. в положении лежа определяется ЧСС 2-3 раза и измеряется АД. Затем испытуемый медленно встает и находится в вертикальном положении в течение 10 мин. в ненапряженной позе. Для обеспечения наилучшего расслабления мышц ног необходимо, отступив от стены на расстояние одной ступни, прислониться к ней спиной, под крестец подкладывают валик. Сразу после перехода в вертикальное положение в течение всех 10 мин. на каждой минуте регистрируют ЧСС и АД (за первые 10 с - ЧСС, за оставшиеся 50 с - АД).

Оценка состояния ортостатической устойчивости производится по следующим показателям:

1. Разница пульса, на 1-й мин. и на 10-й мин. по отношению к исходной величине в положении лежа. АД увеличивается на 10-15 %.

2. Время стабилизации ЧСС.

3. Характер изменения АД в положении стоя.

4. Самочувствие и выраженность соматических расстройств (побледнение лица, потемнение в глазах и др.).

Удовлетворительная ортостатическая устойчивость:

1. Учащение пульса невелико и на 1-й мин. ортоположения колеблется в пределах от 5 до 15 уд./мин., на 10-й мин. не превышает 15-30 уд./мин.

2. Стабилизация пульса наступает на 4-5 мин.

3. Систолическое АД остается неизменным либо незначительно снижается, диастолическое АД увеличивается на 10-15 % по отношению к его величине в горизонтальном положении.

4. Самочувствие хорошее и нет каких-либо признаков соматического расстройства.

Признаками ортостатической неустойчивости являются увеличение ЧСС более, чем на 15-30 уд./мин., выраженное падение АД и различной степени выраженности вегетосоматические расстройства.


5. Определение анаэробных возможностей организма по величине максимальной анаэробной мощности (МАМ)

Анаэробные возможности (т. е. возможность проводить работу в бескислородных условиях) определяются энергией, образуемой при распаде АТФ, креатинфосфата и гликолиза (анаэробного расщепления углеводов). Степень адаптации организма к работе в бескислородных условиях определяют величину работы, которую человек может выполнить в этих условиях. Эта адаптация важна при развитии скоростных возможностей организма.

При массовых обследованиях для определения МАМ используется тест Р. Маргария (1956). Определяется мощность бега вверх по лестнице с максимальной скоростью за небольшое время.

Методика. Лестница, длиной примерно 5 м, высотой подъёма - 2,6 м, наклоном - более 30° пробегается за 5-6 сек. (примерное время максимального бега).

Испытуемый находится на 1-2 м от лестницы и по команде выполняет тест. Фиксируется время в сек. Измеряется высота ступеней, подсчитывается их количество, определяется общая высота подъёма:

МАМ = (P · h) / t кгм/с

где Р - вес в кг, h - высота подъёма в м, t - время в сек.

Оценка результата: наибольшее значение МАМ отмечается в 19-25 лет, с 30-40 лет оно уменьшается. У детей оно имеет тенденцию к повышению.

Для нетренированных лиц МАМ составляет 60...80 кгм/с, у спортсменов - 80...100 кгм/с. Для перевода в ватты необходимо полученное значение умножить на 9,8, а для перевода в килокалории в минуту - на 0,14.

Для контроля над уровнем работоспособности спортсмена, раннего предупреждения перетренировки, определения целевой частоты сердечных сокращений (ЧСС), и, соответственно, внесения поправок в тренировочную программу рекомендуется регулярно выполнять специальные нагрузочные тесты. Ниже предлагаемые методики каждый способен освоить самостоятельно, выполнить без привлечения помощников и использования сложной техники (желательно иметь, пульсометр, велоэргометр (или тредбан), равнинный участок дороги).

Общие требования .

Для правильной интерпретации полученных данных важно регулярное тестирование, необходимо стандартизировать условия выполнения тестов по времени суток, температуре и влажности воздуха, рельефу, на котором выполняется нагрузка. В качестве теста лучше выбрать профильное упражнение (бегуну - бег, велосипедисту - велосипед и т.д.). Перед тестом разминка обязательна.

Определение максимальной частоты сердечных сокращений (ЧССмах) .

После хорошей разминки следует интенсивная нагрузка продолжительностью 4-5 мин. Заключительные 20-30с упражнения выполняются с максимальным усилием, регистрируется ЧССмах. В % от ЧССмах рассчитываются целевые тренировочные зоны. Значительное снижение ЧССмах по сравнению с ранее регистрируемыми значениями свидетельствует о перетренировке.*

Определение точки отклонения прямой ЧСС (ЧССоткл).

Тестирование происходит в виде ступенчато повышаемой (каждые 10 мин) нагрузке, выполняемой до отказа. На первом отрезке поддерживается постоянная ЧСС 140 уд/мин. ЧСС, при которой выполнение нагрузки станет невозможным или возможным, но лишь ценой невероятных усилий, будет примерно на 5 ударов превышать ЧССоткл. Интенсивность нагрузки, соответствующая этой точке, является анаэробным порогом, максимальной нагрузкой, обеспечение которой происходит исключительно за счёт аэробной энергии. Любая нагрузка, выполняемая с интенсивностью, превышающей ЧССоткл, приводит к накоплению молочной кислоты (лактата). Важно - анаэробный порог является наиболее важным критерием оценки функционального состояния у спортсменов на выносливость. В % от ЧССоткл рассчитываются целевые тренировочные зоны.*

Контроль текущей работоспособности.

Нагрузка состоит из трёх серий по 10 мин, каждая из которых выполняется при постоянном пульсе - 130, 140, 150 уд/мин. Регистрируется преодолённая дистанция и скорость. Полученные в динамике наблюдений данные позволяют так же оценить степень акклиматизации (временной, климатической, высотной), степень восстановления после перенесённого инфекционного заболевания, сравнить физическое состояние разных спортсменов.

В любительской практике данного набора из 3-х тестов вполне достаточно. Естественно ими перечень исследовательских инструментов не ограничивается, но методика выполнения более сложная, требует квалифицированного ассистента, математических расчётов, оценивание результатов происходит по специальным таблицам или номограммам. Наиболее известны тест Конкони (определение ЧССоткл), тест Астранда (оценка функционального состояния по уровню максимального потребления кислорода(МПК)), PWC 170 (оценка физической работоспособности), ортостатическая проба (оценка вегетативного регулирования).

Особый интерес представляют тесты оценивающие физическую работоспособность, проводимые в естественных условиях и имеющие прямое прикладное значение в соревновательной практике.

Горный тест велосипедистов - шоссейников. Необходимо выбрать равномерный непрерывный подъём, на преодоление которого требуется 30-45 мин. Велосипедист должен ехать в него с максимально возможной скоростью. Разница высот, преодолённая спортсменов за время выполнения теста, экстраполируется в разницу высот в час, она и будет являться показателем его горных способностей, которые можно сравнить с показателями других велосипедистов, оценить свои шансы на фоне других.

Пороговая скорость бегуна (V4) - скорость бега на уровне ЧССоткл (анаэробного порога). Пороговая скорость может быть определена в ступенчатом тесте или рассчитана на основании результата спортсмена в беге на 5 и 10 километров. Зная свою пороговую скорость, спортсмен может высчитать оптимальное время прохождения различных дистанций, применяя процентные отношения из специальной таблицы.

Например, спортсмен установил, что его пороговая скорость - 16 км/ч. Следовательно, он сможет пробежать 1 км за 3:45. Марафон спортсмен может бежать с оптимальной скоростью 94% от V4, что составляет 15 км/ч или 1 км за 4:00. Таким образом, оптимальное время спортсмена на марафоне составит 2:48:00.

*По книге - ЧСС, ЛАКТАТ И ТРЕНИРОВКИ НА ВЫНОСЛИВОСТЬ. П.ЯНСЕН. ТУЛОМА 2007г.

В книге изложены теория, практика и анализ тренировки спортсменов на выносливость на основе мониторинга частоты сердечных сокращений (ЧСС) и уровня молочной кислоты (лактата) в крови, приведены тесты нахождения анаэробного порога и оценки функционального состояния, обсуждаются проблемы перетренированности и спортивного сердца.

П роба Штанге применяется для анализа системы внешнего дыхания.

Приготовьте секундомер. Сядьте, сделайте глубокий вдох-выдох, затем сделайте вдох примерно на 80% и задержите дыхание. Включите секундомер. Запишите ваш результат времени задержки. Если во время следующего теста время задержки дыхания уменьшается, это свидетельствует о перетренированности, недовосстановлении.

Проба Серкина


П роба Серкина применяется для анализа системы внешнего дыхания.

1 фаза. Определите время задержки на вдохе в положении сидя.

2 фаза. Выполните 20 приседаний за 30 секунд и снова замерьте время задержки.

3 фаза. Отдохните 1 минуту стоя и вновь замерьте длительность задержки дыхания в положении сидя.

Результаты оцениваются по следующей таблице.

Ортостатическая проба


О ртостатическая проба применяется для анализа состояния нервной системы.

Утром, после пробуждения, спокойно полежав несколько минут, подсчитайте частоту сердечных сокращений (ЧСС). Затем медленно опустите ноги на пол, сядьте и вновь подсчитайте ЧСС. И, наконец, встаньте и снова подсчитайте ЧСС. Полученные результаты не должны расходиться более чем на 10 секунд. Например: 60-70-80. Если расхождение более 10 секунд, это означает, что вы находитесь в состоянии перетренированности.

И змерение пульса производится для анализа состояния сердечно-сосудистой системы.

Частота пульса измеряется в одном и том же положении, в одно и то же время. Например, утром после пробуждения, до и после тренировки. Изменение частоты пульса в сторону увеличения, свидетельствует о состоянии перетренированности.

Т ест Руфье применяется для анализа состояния сердечно-сосудистой системы.

Все замеры производятся в интервале равном 15 секундам. В положении сидя, после 5-минутного отдыха, измерьте свой пульс (Р1). Затем выполните 20 приседаний за 30 секунд и вновь измерьте пульс в положении стоя (Р2). Затем, в положении сидя, отдохните 1 минуту, и снова измерьте пульс (Р3).

Теперь вычислим индекс Руфье по формуле:

J=4 (P1+P2+P3)-200:10

Если J меньше 0, ваша приспособляемость к нагрузкам отличная.

Если менее 3 - высокая.

Если 3-5 - хорошая.

Если 6-10 - удовлетворительная.

Если 11-15 - слабая.

Если больше 15 - неудовлетворительная.

Возрастание индекса J является также и признаком перетренированности, переутомления.

12-минутный тест Купера

Т ест выполняется на ровной, измеренной трассе (стадионе). Испытуемый или группа испытуемых преодолевают максимально возможную дистанцию за 12 минут. После 12-минутной работы определяется дистанция, которую они смогли преодолеть за это время. Результаты оцениваются по следующим таблицам:

Мужчины


Баллы
20-29 30-39 40-49 50-59 60 и более
5 2.6-2.8 2.5-2.7 2.45-2.6 2.3-2.5 2.1-2.4
4 2.4-2.6 2.3-2.5 2.2-2.45 2.1-2.3 1.9-2.1
3 2.1-2.4 2.1-2.3 2.0-2.2 1.85-2.1 1.6-1.9
2 1.95-2.1 1.9-2.1 1.8-2.0 1.65-1.85 1.4-1.6
1 < 1.95 < 1.9 < 1.8 < 1.65 < 1.4

Женщины


Баллы Длина преодоленной дистанции (км) и возраст (лет)
20-29 30-39 40-49 50-59 60 и более
5 2.15-2.3 2.1-2.2 2.0-2.1 1.9-2.0 1.75-1.9
4 1.9-2.1 1.9-2.0 1.8-2.0 1.7-1.9 1.6-1.7
3 1.8-1.9 1.7-1.9 1.6-1.8 1.5-1.7 1.4-1.55
2 1.55-1.8 1.5-1.7 1.4-1.7 1.35-1.5 1.25-1.35
1 < 1.55 < 1.5 < 1.4 < 1.35 < 1.25

Тест оценки физической работоспособности PWC 170

С ущность теста PWC 170 (от английского Phisicsl Working Capacity - "физическая работоспособность") заключается в определении мощности стандартной нагрузки, при которой частота сердечных сокращений (ЧСС) достигает 170 ударов в минуту.

Наряду с тестом PWC 170 проводятся также идентичные тесты с коррекцией на возрастное снижение возможностей кардиореспираторной системы. Искомая величина физической работоспособности, при изменяющейся с возрастом ЧСС, определяется по формуле что и PWC 170, но с учетом возрастных ограничений предельно допустимых значений ЧСС:

PWC 170 = W1+(W2-W1) (170-ЧСС1) \ (ЧСС2-ЧСС1).....(1)

............(2)

Х 0,87.....(3)

или определить по данным следующей таблицы:

Методика проведения теста PWC 170 имеет много модификаций. Для самостоятельного применения лучше всего использовать его степэргометрический вариант (существуют также велоэргометрический, беговой и другие варианты теста). При этом испытуемому предлагается выполнить две нагрузки умеренной интенсивности: восхождение на ступеньки разной высоты - от 20 до 50 см. Каждая нагрузка выполняется по 5 минут с определенной частотой восхождений на ступеньку (например, 30 раз в минуту) с 3-минутным интервалом отдыха и без предварительной разминки.

У испытуемого, в состоянии относительного покоя и в положении сидя, определяется для контроля исходная ЧСС, затем он в течение 5-ти минут выполняет первую нагрузку. В последние 30 секунд работы с помощью электрокардиографа, или за 10-15 секунд сразу после нагрузки, пальпаторно подсчитывается ЧСС1. После отдыха выполняется вторая, более высокая, нагрузка, и аналогичным путем подсчитывается ЧСС2. Величины ЧСС должны определяться как можно точнее.

Показатель работоспособности расчитывается по той же формуле (1):

PWC 170 = W1+(W2-W1) (170-ЧСС1) \ (ЧСС2-ЧСС1)

Мощность первой (W1) и второй (W2) нагрузки при восхождении на ступеньки определяется по формуле:

где W - мощность работы, кг.м/мин;

P - масса испытуемого, кг;

H - высота ступеньки, м;

T - число подъемов (восхождений на ступеньку) в минуту;

1.3 - расчетный коэффициент.

Полученные абсолютные значения физической работоспособности (в кгм/мин) не учитывают особенностей физического развития людей. Известно, что уровень физической работоспособности зависит не только от тренированности, но и от таких факторов, как пол, возраст, размеры тела, наследственность, состояние здоровья и т. д. Поэтому для того. чтобы можно было сравнивать уровень физической работоспособности у людей не только различного возраста и пола, но и с различной массой тела, расчитывают относительные величины PWC AF на 1 кг массы тела (в кгм/мин кг). Для этого полученное по формуле (1) абсолютное значение показателя физической работоспособности необходимо разделить на значение показателя веса тела (в кг).

Оценка физической работоспособности у людей различного возраста и пола (обобщенные данные)

Мужчины

Баллы
20-29 30-39 40-49 50-59 60 и более
5 > 16.6 > 15.8 > 15.0 > 14.1 > 13.6
4 15.6 - 16.5 14.8 - 13.5 14.1 - 14.9 13.3 - 14.0 12.9 - 13.5
3 14.2 - 15.2 13.4 - 12.6 12.6 - 14.0 11.9 - 13.2 10.2 - 12.8
2 13.3 - 14.1 12.5 - 11.3 11.7 - 12.5 10.9 - 11.8 9.1 - 10.1
1 < 13.2 < 12.4 < 11.6 < 10.8 < 9.0

Женщины

Баллы Физическая работоспособность (в кгм/мин Х кг) в зависимости от возраста (лет)
20-29 30-39 40-49 50-59 60 и более
5 > 13.4 > 12.7 > 12.1 > 11.2 > 10.2
4 12.4 - 13.3 11.8 - 12.6 11.2 - 12.0 10.4 - 11.1 9.3 - 10.1
3 11.1 - 1.9 10.8 - 11.7 9.8 - 11.1 8.6 - 10.3 7.5 - 9.2
2 10.0 - 11.0 9.5 - 10.6 8.7 - 9.7 7.5 - 8.5 6.4 - 7.4
1 < 9.9 < 9.4 < 8.6 < 7.4 < 6.3

П оказатель МПК характеризуетт наибольшее количество кислорода, потребляемое человеком в течение одной минуты, и является критерием аэробной мощности.

В настоящее время определение МПК широко используется для решения вопроса о профессиональной пригодности людей, оценки их физической подготовленности, а также для диагностики функционального состояния кардио-респираторной системы. Прямые методы определения МПК связаны с предельными физическими нагрузками и наличием относительно дорогой и сложной аппаратуры. Величину МПК можно рассчитать по формуле, с ошибкой не более 10%:

МПК = (1,7 Х PWC 170 + 1240) \ P,

где МПК - потребление кислорода на единицу массы тела (в мл/мин Х кг);
PWC 170 - абсолютное значение физической работоспособности в кгм/мин;
P - вес тела в кг.

Оценка физического состояния в зависимости от МПК у людей различного возраста и пола (обобщенные данные)

Мужчины

Баллы
20-29 30-39 40-49 50-59 60 и более
5 > 55 > 51 > 47 > 43 > 39
4 52 - 55 48 - 51 44 - 47 40 - 43 36 - 39
3 44 - 51 40 - 47 36 - 43 32 - 39 27 - 35
2 39 - 43 35 - 39 31 - 35 26 - 31 22 - 26
1 < 39 < 35 < 31 < 26 < 22

Женщины

Баллы Величина МПК (в мл/мин Х кг) в зависимости от возраста (лет)
20-29 30-39 40-49 50-59 60 и более
5 > 48 > 44 > 41 > 38 > 35
4 44 - 48 40 - 44 37 - 41 34 - 38 31 - 35
3 35 - 43 32 - 39 30 - 36 28 - 33 26 - 30
2 29 - 34 26 - 31 23 - 29 21 - 27 19 - 25
1 < 29 < 26 < 23 < 21 < 19

1.Понятие «общая физическая работоспособность».

2. Исследование общей физической работоспособности:

а) тест Руфье- Диксона

б) Гарвардский степ-тест

в) тест PWC170

г) определение максимального потребления кислорода (МПК)

3. Собственные исследования физической работоспособности

Скачать:


Предварительный просмотр:

СОВРЕМЕННЫЕ МЕТОДЫ ИССЛЕДОВАНИЯ И ОЦЕНКИ ФИЗИЧЕСКОЙ РАБОТОСПОСОБНОСТИ

1.Понятие «общая физическая работоспособность».

2. Исследование общей физической работоспособности:

А) тест Руфье- Диксона

Б) Гарвардский степ-тест

В) тест PWC170

Г) определение максимального потребления кислорода (МПК)

3. Собственные исследования физической работоспособности

1. Под физической работоспособностью принято понимать такое количество механической работы, которую спортсмен способен выполнять длительно и с достаточно высокой интенсивностью.

Поскольку длительная работа мышц лимитируется доставкой к ним кислорода, общая физическая работоспособность в значительной мере зависит от производительности сердечно- сосудистой и дыхательной систем.

Тесты физической работоспособности по уровню нагрузки разделяются на максимальные и субмаксимальные тесты. Выбор теста на практике представляет собой компромисс между точностью измерения и внутренней стоимостью работы. Для этапных наблюдений предпочтительна высокая точность измерения физической работоспособности, с относительно высокой нагрузкой приходится мириться. Для текущего контроля предпочтительны субмаксимальные тесты.

Организация тестирования физической работоспособности должна отвечать ряду требований для того, чтобы полученные результаты было корректно интерпретировать.

Во- первых, нагрузка должна воздействовать на организм достаточно долго, чтобы вызвать стационарное состояние системы кислородного транспорта.

Во- вторых, мощность нагрузки должна быть такой, чтобы организм полностью использовал функциональные резервы кислородтранспортной системы (аэробная производительность), но не происходила активация анаэробных систем обеспечения энергией (анаэробная производительность). Уровень порога анаэробного обмена (ПАНО) часто вызывает с ЧСС и возрастом:

AF(age frequencu) = (220- возраст)х 0,87

В- третьих, мощность нагрузки должна оставаться постоянной. В противном случае продолжаются переходные процессы, а при ускорении вероятно смешанное обеспечение энергией.

Методологические подходы к изменению физической работоспособности основываются на измерении параметров либо в фазе нагрузки, либо в фазе восстановления после нагрузки. К тестам первой разновидности можно причислить тест МПК, Купера, Новакки, PWC. К тестам второй разновидности можно отнести тесты Руфье- Диксона и Гарвардский степ-тест.

2. Тест Руфье- Диксона

Тест Руфье- Диксона оценивает скорость восстановительных процессов после дозированной физической нагрузки. По скорости восстановления после нагрузки делают вывод об общей физической работоспособности. Тест Руфье- Диксона применяется во врачебном контроле над различным контингентом лиц, занимающихся физической культурой и спортом. Вывод о физической работоспособности может основываться на качественных критериях или на индексе Руфье- Диксона (ИРД)

Методика проведения

В положении сидя (лёжа) в покое у испытуемого подсчитывается пульс в течении 15с и подсчитываются данные за одну минуту (Po). Затем выполняется 30 глубоких приседаний за 45сек. После нагрузки у обследуемого в том же положении (сидя или лежа) за первые 15 и последние 15сек первой минуты отдыха подсчитывают пульс и подсчитывают данные за одну минуту (P1,P2 соответственно).

Оценка работоспособности

По результатам тестирования можно дать качественную оценку, заключение «атлетическое сердце», если выполняются три условия. Во- первых, P0 60; во- вторых, P1 2P0; в- третьих, P2 P0.

Расчёт индекса Руфье- Диксона проводится по формуле:

(P1-70)+2*(P2-P0)

ИРД=

где P0 – исходная ЧСС, мин

P1 – ЧССпосле нагрузки, мин

P2 – ЧСС в конце 1-й мин восстановления, мин

2.1 . Гарвардский степ- тест

С помощью Гарвардского степ- теста количественно оценивается скорость восстановительных процессов после дозированной физической нагрузки. По скорости восстановления после нагрузки делают вывод об общей физической работоспособности. Гарвардский степ- тест применяется во врачебном контроле над различным контингентом лиц, занимающихся физической культурой и спортом. Вывод о физической работоспособности делается на основе индекса Гарвардского степ- теста (ИГСТ).

Методика проведения

Нагрузка различной продолжительности, в зависимости от пола и возраста, дается в виде восхождения на одинарную ступень различной высоты. Темп восхождения у всех обследуемых составляет 30 восхождений (120 шагов) в минуту. Время выполнения нагрузки в предписанном режиме фиксируется с точностью до 1 секунды. Значение длительности работы подставляется в формулу для расчета индекса.

Если испытуемый из-за усталости отстает от темпа в течении 20 секунд, обследование прекращается, фиксируется длительность выполнения нагрузки в секундах и полученное время подставляется в формулу для расчета индекса.

Регистрация ЧСС проводится после нагрузки в положении сидя за первые 30 секунд на второй (f1), третий (f2) и четвертой (f3) минутах восстановительного периода. Результаты тестирования выражаются в виде ИГСТ:

T?100

ИГСТ=

(f1+f2+f3)*2

где t – время восхождения на ступень, с,

f1 – пульс за первые 30 секунд со второй минуты,

f2 – пульс за первые 30 секунд с третьей минуты,

f3 – пульс за первые 30 секунд с четвертой минуты восстановительного периода.

Оценка работоспособности

У спортсменов значение ИГСТ выше, чем у не тренированных людей. Особенно высокие величины индекса обнаруживается у представителей циклических видов спорта, развивающих выносливость. Эти данные указывают на то, что величина ИГСТ может использоваться для оценки общей физической работоспособности и выносливости спортсменов.

2.2 Тест PWC170

Тест PWC170 рекомендован Всемирной организацией здравоохранения для тестирования работоспособности человека в качестве эталона. Тест адекватен для определения физической работоспособности, как физкультурников, так и спортсменов.

Физическая работоспособность в тесте PWC170 выражается в величинах мощности физической работы, при которой ЧСС у обследуемого человека достигает 170 ударов в минуту. Выбор данной ЧСС основан на положении, согласно которому в молодом возрасте зона оптимального функционирования ССС находится в диапазоне около 170 ударов в минуту. Вторая физиологическая закономерность, лежащая в основе теста, заключается в наличии линейной зависимости между ЧСС и мощностью выполняемой нагрузки вплоть до ЧСС, равной 170 ударам в минуту. При более высокой ЧСС линейный характер этой взаимосвязи нарушается вследствие активизации анаэробных (гликолитических) механизмов энергетического обеспечения мышечной работы.

В практике врачебного контроля применяют 3 варианта теста PWC170: велоэргометрический, шаговый, тест PWC170 со специфическими нагрузками.

В тесте PWC170 определяется мощность физической работы, при которой ЧСС у обследуемого человека достигает 170 ударов в минуту. Эта мощность представляет собой абсолютный показатель физической работоспособности. Затем рассчитывают относительный показатель физической работоспособности - частное от деление абсолютного показателя физической работоспособности на массу тела обследуемого человека.

Шаговый вариант теста PWC170

Методика проведения

Испытуемому предлагают выполнить путем восхождения на одинарную ступень две нагрузки разной мощности. Мощность работы регулируется изменением высоты ступени. Продолжительность каждой из нагрузок составляет 4-5 минут с периодом отдыха между нагрузками 3 минуты. Темп восхождения на ступень составляет 30 подъемов в минуту. ЧСС определяется в первые 10 секунд после каждой нагрузки, пересчитывается за одну минуту и обозначается соответственно f1,f2.

Мощность нагрузки в шаговом варианте теста PWC170 рассчитывается по формуле:

W=P*h*n*1,3,

где W – мощность работы (кгм/мин),

P – масса тела (кг),

H – высота ступени (м),

N – темп восхождения (кол-во раз в мин., мин.)

Абсолютную величину PWC170 можно найти либо путем графической экстраполяции, либо аналитическим путем по формуле, предложенной В.Л. Карпманом:

170 – f1

PWC170 = W1+ (W2-W1) *

F2 – f1

где W1 – мощность первой нагрузки,

W2 - мощность второй нагрузки,

F1 – ЧСС при первой нагрузки,

F2 – ЧСС при второй нагрузки.

Тест PWC170 по методике Л.И. Абросимовой

Модификация теста была предложина Л.И.Абросимовой, И.А.Корниенко и соавторами (1978г.) в целях сокращения времени на исследования.

Методика проведения.

В условиях относительного покоя определяется ЧСС. Затем выполняется однократное восхождение на ступеньку в течении 5 минут (для детей 3-х мин.). высота ступеньки для женщин 40см, для мужчин 45см. интенсивность работы должна быть такой, чтобы ЧСС повысилось до 150-160 ударов в минуту. Для спортсменов темп восхождения 30 подъемов в минуту.

ЧСС регистрируют сразу после нагрузки за первые 10 секунд восстановительного периода. Для расчета работоспособности используется следующая формула:

PWC170 = * (170 – f0)

f1- f0

где W – мощность нагрузки,

F0 – ЧСС в покое,

F2 – ЧСС после нагрузки.

Поскольку абсолютная величина PWC170 зависит от массы тела, следует инвилировать индивидуальное различие в весе у разных спортсменов. С этой целью рассчитывают относительную величину PWC170 , для чего следует абсолютную величину PWC170 разделить на массу тела.

Оценка работоспособности.

У здоровых молодых не тренированных мужчин абсолютная величина PWC170 колеблется в пределах 700-1100 кг/мин., а у здоровых молодых не тренированных женщин – 450-750 кг/мин. Относительная величина PWC170 у не тренированных мужчин составляет в среднем 15,5 кгм/мин/кг, а у не тренированных женщин – 10,5 кгм/мин/кг.

У спортсменов этот показатель зависит от специализации. Средняя величина абсолютного и относительного показателя PWC170 составляет для мужчин 1520 кгм/мин и 20-24 кгм/мин/кг, а для женщин – 780 кгм/мин и 17-19 кгм/мин/кг. Более высокие значения PWC170 имеют представители циклических видов спорта, тренирующих выносливость.

Велоэргометрический вариант теста PWC17.0

Методика проведения.

Испытуемому предлагают последовательно выполнить 2 нагрузки (W1, W2) возрастающей мощности с поддерживаемой на постоянном уровне частотой педалирования 60-70 оборотов в минуту. Продолжительность каждой из нагрузок составляет 5минут. В конце первой и второй нагрузки в течении 30 секунд определяется ЧСС, которая обозначается соответственно f1, f2. Между нагрузками предусмотрен период восстановления 3 минуты.

При выборе величины первой нагрузки для здоровых не тренированных взрослых мужчин ее мощность определяется как 1Вт/кг массы тела (6кгм/мин), а для женщин – 0,5 Вт/кг (3 кгм/мин).

Критерием того, что первая нагрузка выбрана правильно, может служить величина ЧСС в конце нагрузки (f1), которая должна составлять 110-130 ударов в минуту.

Мощность второй нагрузки подбирается с учетом мощности первой нагрузки (W1) и ЧСС после первой нагрузки (f1).

Критерием правильности выбора мощности второй работы служит величина ЧСС в конце нагрузки (f2), которая должна достигать 145-160 ударов в минуту.

Величина абсолютного показателя PWC170 рассчитывается по формуле В.Л.Картмана, приведенной ниже:

170 – f1

PWC170 = W1+ (W2-W1) *

F2 – f1

Затем рассчитывается относительная величина PWC170

отн. PWC170 = PWC170/P, кгм/мин/кг.

Тест PWC170 со специфическими нагрузками

Этот вариант теста PWC170 основан на той же физиологической закономерности, что и велоэргометрический вариант теста, а именно линейной зависимости ЧСС от скорости легкоатлетического бега, плавания, бега на лыжах или коньках и других локомоций до пульса 170 ударов в минуту. Таким образом, учитывая результаты двух ступенчато возрастающих специфических нагрузок, выполняемых с умеренной скоростью, тест PWC170 со специфическими нагрузками позволяет определить аналитическим путём скорость локомоций, при которой ЧСС достигнет значения 170 ударов в минуту.

Методика проведения

Нагрузка представлена спортивной специфической деятельностью, связанной с перемещением тела спортсмена в пространстве. Первая нагрузка длительностью примерно 5 мин проводится с такой скоростью движения, чтобы пульс стабилизировался на уровне 110- 130 ударов в минуту. Затем следует период восстановления 5 мин. Вторая нагрузка длительностью примерно 5 мин проводится с -такой скоростью движения, чтобы пульс стабилизировался на уровне 145- 160 ударов в минуту.

ЧСС измеряется в первые 10 с после окончания нагрузки либо с помощью радиотелеметрии в последние 30 с работы.

Расчёты скорости циклического движения при пульсе 170 ударов в минуту PWC170 производится по видоизменённой формуле В.Л. Карпмана:

170 – f1

PWC170 = V1+ (V2-V1) *

F2 – f1

где V1 – скорость циклического движения во время первой нагрузки, (м/с);

V2 - – скорость циклического движения во время второй нагрузки, (м/с);

F1- ЧСС после первой нагрузки;

F2- ЧСС после второй нагрузки;

Скорость циклического движения во время нагрузок рассчитывается по формуле:

V=S/t (м/с),

где S - длина дистанции в метрах;

t- время прохождения дистанции в секундах.

При выполнении теста PWC170 со специфическими нагрузками требуется выполнение следующих условий:

Длительность каждой из нагрузок должна составлять 4- 5 мин, чтобы ЧСС достигла устойчивого состояния;

Разминка перед тестом не проводится;

Дистанцию следует проходить в равномерном темпе, без ускорений, на местности, имеющей ровную поверхность;

В конце первой нагрузки ЧСС должна достигать 110130 ударов в минуту, в конце второй нагрузки- 145- 160 ударов в минуту.

Оценка физической работоспособности

Величина PWC170 зависит от вида спорта и достоверно увеличивается с ростом спортивной квалификации. Данный показатель позволяет оценивать не только общую физическую работоспособность, но и специальную подготовленность спортсменов.

3.Собственные исследования физической работоспособности

1. Оценка физической работоспособности по индексу Руфье- Диксона:

Возраст: 22 года

Спортивный стаж: 10 лет

Дата обследования: 22.04.09

P0= 88 P1 = 136 P2= 92

ИРД=(P1-70)+2*(P1- P0)/10= (136-70)+2*(92-88)/10=7,4

Оценка физической работоспособности средняя.

Оценка физической работоспособности по ИРД средняя.

2. Оценка физической работоспособности по Гарвардскому степ- тесту:

Ф.И.О.: Терещенко Юрий Юрьевич

Возраст: 22 года

Спортивный разряд: 1 взрослый )*2= 300*100\(100+120+106) *2=82

3 . Оценка физической работоспособности по тесту PWC170

Ф.И.О.: Терещенко Юрий Юрьевич

Возраст: 22 года

Спортивный разряд: 1 взрослый

Спортивный стаж: 10 лет

Дата обследования: 12.04.09

Дополнение к анамнезу: самочувствие отличное

Номер нагрузки

Высота ступени

Масса

Темп

Мощность нагрузки

ЧСС

994,5

0,45

1491,75

W= 1,3*P* h1*n1= 1,3*85*30*0,3= 994,5 кгм\мин

W= 1,3*P* h2*n2= 1,3*85*30*0,45= 1491,75 кгм\мин

170 – f1

PWC170 = W1+ (W2-W1) *

F2 – f1

994,5+(1491,75-994,5)*(170- 132)\ (150-132)= 2044,25кгм\мин

Отн. PWC170 = PWC170 \P= 2044,25\85= 24кгм\мин\кг

Оценка физической работоспособности хорошая.


Конспект по мотивам «ЧСС, лактат и тренировки на выносливость» (Янсен Петер)

Для контроля за уровнем работоспособности спортсмена и коррекции тренировочной программы рекомендуется регулярно выполнять специальные нагрузочные тесты. Рассмотрим неинвазивные (без взятия образцов крови) методы определения точки отклонения, методы оценки функционального состояния спортсмена на основе уровня лактата в крови, а также непрямой метод определения максимального потребления кислорода.

Представленные тесты лучше всего отработаны на бегунах и велосипедистах. Однако они могут быть приспособлены для других спортсменов на выносливость — гребцов, пловцов, спидскейтеров. В лыжных гонках из-за постоянно меняющихся условий скольжения точная оценка работоспособности затруднительна. Поэтому спортсмены часто применяют беговые тесты или тесты на велоэргометре.

Тест Конкони

Итальянец Франческо Конкони, профессор физиологии, разработал неинвазивный метод определения точки отклонения. Он не требует взятия образцов крови и измерения уровня лактата. Точка отклонения (ЧССоткл) — это частота сердечных сокращений (ЧСС), выше которой начинается накопление лактата. Концентрация лактата на уровне ЧССоткл около 4 ммоль/л. Нагрузка на уровне ЧССоткл может поддерживаться в течение длительно, поскольку соблюдается равновесие между выработкой и элиминацией молочной кислоты.

Между ЧССоткл и анаэробным порогом (АнП) существует тесная взаимосвязь. Анаэробный порог — это интенсивность нагрузки, выше которого содержание лактата в крови резко возрастает. Содержание лактата на уровне анаэробного порога так же как и на уровне ЧССоткл, составляет около 4 ммоль/л.

Выполнение теста Конкони

Тест Конкони выполняется на 400-метровой легкоатлетической дорожке. Перед началом теста проводится разминка — 15-30 минут. Затем спортсмен выполняет непрерывный бег с постепенным увеличением скорости бега через каждые 200 м. На каждом 200-метровом отрезке скорость держится постоянной. Нетренированным людям рекомендуется пробегать первые 200 м за 70 секунд, а хорошо подготовленным спортсменам — за 60 секунд. Каждый следующий 200-метровый отрезок преодолевается на 2 секунды быстрее предыдущего. В конце каждого 200-метрового отрезка фиксируются ЧСС и время. Тест продолжается, пока спортсмен не сможет больше увеличить скорость (График 40).

Для выполнения теста спортсмену требуется помощник. Тест начинается с «Пункта 1». Спортсмен бежит с постоянной скоростью до «Пункта 2», фиксирует свою ЧСС и сразу же увеличивает скорость бега, которую поддерживает следующие 200 м. По возвращении к «Пункту 1» спортсмен сообщает помощнику, какие показатели ЧСС были у него на первом и втором 200-метровых отрезках. Помощник засекает время и заносит данные о времени и ЧСС в протокол. При выполнении теста должно получиться от 12 до 16 записей. Общая продолжительность бега должна составить 10-12 мин, а дистанция — 2400-3200 м.

Схема 3.1. Определение точки отклонения по методу Конкони.

Инструменты, необходимые для выполнения теста

  • Монитор сердечного ритма.
  • Секундомер.
  • Таблица для занесения данных ЧСС и скорости (времени).
  • Ручка или карандаш.
  • Беговая дорожка (400 м).

Таблица для записи результатов теста и шкала для определения скорости бега. Если 200-метровый отрезок проходят за 50 секунд, то скорость будет равна 14,4 км/ч или 4 минуты 10 секунд на 1 км.

Отметка Дистанция ЧСС Время Км/ч
1 200
2 400
3 600
4 800
5 1000
6 1200
7 1400
8 1600
9 1800
10 2000
11 2200
12 2400
13 2600
14 2800
15 3000
16 3200
17 3400
18 3600

Данные теста необходимо нанести на миллиметровку в виде графика, где вертикальная ось, или ось Y, будет отображать ЧСС, а горизонтальная ось, или ось X, — скорость бега в км/ч (График 41). По кривой можно определить какая скорость и ЧСС соответствует анаэробному порогу.

После месяца тренировок можно повторить. Если аэробные способности улучшились, кривая сдвинется вправо. Если аэробные способности снизились, кривая сдвинется влево (График 42).

Тест Конкони имеет смысл проводить только при условии полного восстановления и хорошего самочувствия спортсмена. Спортсмен должен быть способен поддерживать бег в течение 45 мин.

Тест Конкони с применением звуковых сигналов

Чтобы пробегать 200-метровый отрезок ровно на 2 с быстрее предыдущего, необходимо долго практиковаться. Для упрощения этой задачи часто используют звуковые сигналы.

Инструменты для выполнения теста Конкони с применением звуковых сигналов

  • Беговая дорожка с хорошо заметными метками через каждые 20 м.
  • Таблица, показывающая к какому времени должна быть пройдена каждая 20-метровая отметка (см. таблицу 3.1).
  • Плеер с наушниками.
  • Сумка с клипсом для закрепления плеера на одежде.
  • Запись сигналов, оповещающими о том, когда необходимо преодолеть очередную отметку.
  • Монитор сердечного ритма с функцией памяти.
  • Таблица для занесения данных ЧСС.

Спортсмен тщательно разминается в течение 15-20 мин, после чего начинается тест на 400-метровой дорожке. Начальный темп — низкий, но скорость увеличивается через каждые 200 м. Каждый последующий 200-метровый отрезок пробегается на 2 с быстрее.

Спортсмен, снаряженный портативным плеером и монитором ЧСС, стартует из «Пункта А». Спортсмен бежит в том темпе, который диктуют ему наушники, до тех пор, пока не сможет добегать до отметок вовремя.

Схема 3.3. Тест Конкони с применением звуковых сигналов.

Таблица 3.1. Отсечки времени для записи звуковых сигналов.

Интерпретация полученных данных

График 43. Кривая, полученная в ходе тестирования спортсмена по методу Конкони. Кривая сохраняет линейность до ЧСС 190 уд/мин и скорости бега 21,1 км/ч. При более высоких скоростях кривая отклоняется вправо. Для тестируемого спортсмена ЧССоткл составляет 190 уд/мин. Его скорость на уровне точки отклонения равна 21,1 км/ч.

График 44. Сдвиг кривой скорость бега/ЧСС. После периода тренировок произошел сдвиг кривой у обоих бегунов. Когда функциональное состояние улучшается, кривая смещается вправо. Третий тест за 30 мая со спортсменом С.А. выполнялся за несколько дней до того, как ему был поставлен диагноз мононуклеоз. Кривая уже тогда показывала снижение работоспособности. Кривая Конкони отражает перетренированность, инфекционные заболевания и другие изменения функционального состояния спортсмена.

Тест Конкони удобный и простой метод. Но выполнение теста и интерпретация полученных данных иногда довольно проблематичны. В литературе немало критических замечаний по поводу теста Конкони. На кривых некоторых спортсменов ЧССоткл невидна или трудно различима.

Тест с равномерной нагрузкой

Спортсмен должен выполнять максимальную аэробную работу в течение 30-50 мин. Нагрузка должна быть равномерной, так чтобы темп к концу теста не снизился. ЧСС во время выполнения нагрузки будет соответствовать ЧССоткл.

График 45. Динамика ЧСС велосипедиста во время равномерной максимальной аэробной работы на шоссе в течение 60 мин. Велосипедист ехал с постоянной высокой скоростью и средним пульсом 160 уд/мин. Таким образом, предполагаемая ЧССоткл спортсмена составляет 160 уд/мин. Тест на шоссе показал точно такую же ЧССоткл как и лактатный тест на велоэргометре.

Тест с повышением нагрузки

ЧССоткл в тесте с повышением нагрузки через каждые 10 мин

График 46. После 10-минутной разминки, спортсмен должен бежать или ехать на велосипеде в постоянном темпе в течение 10 мин, поддерживая пульс 140 уд/мин. Следующие 10 мин бежать или ехать с пульсом 150 уд/мин, затем 10 мин — с пульсом 160 уд/мин, а потом еще 10 мин — с пульсом 170 уд/мин. ЧСС, при которой выполнение нагрузки станет невозможным или возможным ценою невероятных усилий, будет примерно на 5 ударов превышать ЧССоткл. ЧССоткл будет равна ЧСС последнего 10-минутного отрезка минус 5 ударов. Для выполнения этого теста можно использовать велоэргометр.

ЧССоткл определяют, увеличивая скорость езды на велосипеде через каждые 10 км

График 47. Велосипедист проезжает 4 круга по 10 км. Первый круг преодолевается при пульсе 145 уд/мин, второй — при пульсе 155 уд/мин, третий — при пульсе 165 уд/мин, а последний — при пульсе, равном ЧССоткл. Скорость передвижения и ЧСС преобразуются в кривую, которая укажет на ЧССоткл и на текущее функциональное состояние спортсмена. Спортсмену следует повторять этот тест каждые несколько недель, чтобы отслеживать изменения в своем функциональном состоянии.

Горный тест для велосипедистов-шоссейников

Велогонщики делятся на «горняков» и «равнинников». Велосипедист может самостоятельно оценить свои горные способности. Для выполнения горного теста необходимо выбрать равномерный непрерывный подъем, на преодоление которого требуется 30-45 мин. Велосипедист должен ехать в этот подъем с максимально возможной скоростью. Разница высот, преодолеваемая спортсменом за определенный промежуток времени экстраполируется в разницу высот в час, которая и будет являться показателем его горных способностей.

Например, Тони Ромингер в Швейцарии на склоне Кол де Мадонн за 31 мин преодолел разницу высот 903 м. С этой скоростью он мог бы забраться за 1 час на высоту 1748 м. Таким образом, разница высот 1748 м является показателем горных способностей Тони Ромингера.

Данный тест дает информацию о горных качествах велосипедиста, указывает на его функциональное состояние и ЧССоткл. Регулярное выполнение теста, в приблизительно одинаковых условиях, позволяет оценивать изменения в горных способностях и функциональном состоянии спортсмена.

Горные способности велосипедистов можно сравнивать друг с другом.

Однажды Лэнс Армстронг в интервью журналу «Спорт интернэшнл» заявил: «Предсказывая исход «Тур де Франс» 1999 года, журналисты сомневались в моих горных способностях. Я не разделял этих сомнений. В окрестностях Ниццы есть подъем, на котором всегда проверял себя Тони Ромингер. В качестве тренировки мы заезжали в этот подъем пару раз. Мы делали это вместе со всеми велосипедистами, которые жили неподалеку — Акселем Мерксом, Бобби Джуличем и Кевином Ливингстоном, — и каждый из нас видел, кто кого сильнее. Перед «Тур де Франс» я провел очень удачную контрольную тренировку на этом подъеме — я был быстрее всех в тот день. С этого момента я почувствовал небывалую уверенность в своих горных способностях».

Лучшими горными качествами обладает итальянский велосипедист Марко Пантани, который на склоне Альп д’Уэ показал разницу высот 1850 м за час. Восхождение на Альп д’Уэ начинается с высоты 600 м над уровнем моря, а заканчивается на высоте 1850 м. Таким образом, чистая разница высот, преодоленная Пантани, составляет 1250 м. На преодоление этой высоты у Пантани ушло 40,5 мин.

График 48. показана динамика ЧСС трех велосипедистов во время контрольной тренировки в гору.

Методы определения пороговой скорости и ЧССоткл у бегунов

Определение пороговой скорости, исходя из времени бега на 5 и 10 километров

Скорость бега на уровне ЧССоткл (анаэробного порога) называется пороговой скоростью или скоростью V4. Латинская буква «V» обозначает слово «velocity», что в переводе с английского — скорость, а цифра «4» обозначает уровень лактата 4 ммоль/л. Интенсивность бега на дистанциях от 100 м до марафонской зависит от пороговой скорости V4.

График 49. Зависимость между интенсивностью бега и дистанцией соревнований. Скорость V4 соответствует 100%. ЧСС, соответствующая скорости V4, является ЧССоткл. Например, дистанция 5000 м преодолевается спортсменами с интенсивностью 109,3%, а марафон — с интенсивностью 94,3%.


Таким образом, пороговую скорость можно установить, беря за основу показатели времени спортсмена на 5- и 10-километровой дистанциях (таблица 3.2). Например, если результат спортсмена на дистанции 5000 м составляет 18:30, то его пороговая скорость равна 4 мин/км, или 15 км/ч.

Зная свою пороговую скорость, спортсмен может высчитать оптимальное время прохождения различных дистанций, применяя процентные соотношения из графика 49. Например, спортсмен установил, что его пороговая скорость составляет 16 км/ч. Следовательно, он сможет пробежать 1 км за 3:45. Марафон спортсмен может бежать с оптимальной скоростью 94% от V4, что составляет 15 км/ч или 1 км за 4:00. Таким образом, оптимальное время спортсмена на марафоне составит 2:48:00. Полумарафон спортсмен может бежать со скоростью 98,4% от V4 (15,7 км/ч), а значит, он может преодолеть его за 1:20:00.

Таблица 3.2. Скорость V4 в зависимости от результатов на дистанциях 5 и 10 км.

Тест для определения индивидуального анаэробного порога

Индивидуальную пороговую скорость (скорость V4) или ЧССоткл можно также определить в ходе бегового теста, состоящего из 5-6 беговых отрезков (ускорений), преодолеваемых спортсменом с заданной скоростью. В зависимости от подготовленности спортсмена длина каждого бегового отрезка составляет 800, 1000 или 1200 м. При предполагаемой скорости бега на уровне АнП 13-15 км/ч длина одного отрезка составляет 800 м; при 15-17 км/ч — 1000 м, при 17-20 км/ч — 1200 м.

Тест лучше проводить на атлетической дорожке или по фиксированному маршруту с отметками через каждые 200 м. Каждый беговой отрезок (800, 1000 или 1200 м) спортсмен должен пробегать на 2 с быстрее предыдущего на каждые 200 м. Например, если длина отрезка составляет 800 м, то его необходимо преодолеть на 8 с быстрее предыдущего. После каждого ускорения спортсмен переходит на шаг и отдыхает в течение 50 с. Скорость V4 достигается на 4 или 5 ускорении.

Если предполагаемая пороговая скорость спортсмена составляет 15 км/ч (5 км за 18:30), то спортсмен выполняет 6 ускорений по 800 или 1000 м. Время прохождения 200 метров дистанции на пороговой скорости будет равно 48 секундам. Данная пороговая скорость (200 м за 48 с) должна быть достигнута на «отрезке 5». Таким образом, на «отрезке 5» необходимо пробегать каждые 200 метров за 48 с, на «отрезке 4» — за 50 с, на «отрезке 3»-за 52 с, на «отрезке 2» — за 54 с, а на «отрезке 1» — за 56 с (таблица 3.3).

Таблица 3.3. Протокол бегового теста для определения уровня анаэробного порога.

Для получения точных результатов тест должен проводится неоднократно в одних и тех же условиях. Спортсмену необходимо потратить определенное время, чтобы научиться выполнять тест правильно. Тест имеет ценность только при соблюдении точности. Спортсмен должен начать с разминки, после которой сразу же следует первое ускорение. После каждого ускорения спортсмен идет пешком 50 с. Паузы отдыха имеют большое значение, поскольку ЧСС в конце такой паузы дает самую важную информацию в этом тесте. Каждый рабочий отрезок дистанции должен преодолеваться с правильной скоростью. Время на 200-метровых отсечках может засекать помощник, либо сам спортсмен, используя систему, применяемую для теста Конкони, где скорость бега корректируется при помощи звукового сигнала, записанного на магнитофонную ленту.

Нисходящие отрезки кривой на графике 50 указывают на то, что восстановление резко ухудшилось после «отрезка 5». Таким образом, АнП в этом примере находится между 4 и 5 отрезками. Предполагаемая пороговая скорость находится между 3:08 и 2:59 на 800 м. Следовательно, пороговая скорость примерно равна 3:05 на 800 м, что составляет 3:51 на 1000 м или 15,6 км/ч.

Предполагаемая ЧССоткл находится между 165-173 уд/мин, то есть примерно равна 170 уд/мин (таблица 3.4).

Таблица 3.4. Время прохождения беговых отрезков и ЧСС.

Лактатный тест

Концентрация лактата (молочной кислоты) в крови является очень важным показателем, который может служить критерием оценки интенсивности нагрузки. Уровень лактата в крови измеряется в милимолях лактата на литр крови. В покое у здорового человека концентрация лактата составляет 1-2 ммоль/л. После энергичных физических действий этот показатель повышается. Даже относительно небольшое увеличение концентрации лактата (до 6-8 ммоль/л) может ухудшить координацию спортсмена. Регулярно высокие показатели лактата ухудшают аэробные возможности спортсмена.

У хорошо подготовленных спортсменов на выносливость при медленной скорости бега (передвижения на лыжах, велосипеде и т.д.) показатели лактата очень низкие и не превышают аэробного порога (2 ммоль/л). При данной интенсивности нагрузки энергообеспечение происходит полностью аэробным путем.

При повышении скорости бега к обеспечению нагрузки подключается анаэробная система и в мышцах начинает вырабатываться молочная кислота. Однако, если скорость не слишком высокая, молочной кислоты вырабатывается настолько мало, что основная ее часть нейтрализуется организмом. Таким образом, в организме сохраняется равновесие между выработкой и элиминацией (удалением) молочной кислоты. Полагают, что концентрация лактата в этом случае находится в пределах 2-4 ммоль/л. Данный диапазон интенсивности называется аэробно-анаэробной транзитной зоной.

При дальнейшем увеличении скорости выработка молочной кислоты резко возрастает, что приводит к ее накоплению в мышцах и развитию мышечной усталости. Резкое увеличение концентрации лактата в крови указывает на то, что спортсмен работает в анаэробной зоне.

Граница между аэробно-анаэробной транзитной зоной и анаэробной зоной называется анаэробным порогом (АнП). Обычно концентрация лактата на уровне анаэробного порога составляет 4 ммоль/л.

Лактатный тест, помогающий найти анаэробный порог спортсмена, основан на зависимости между уровнем лактата в крови и интенсивностью нагрузки. Лактатный тест можно использовать также для оценки функционального состояния спортсмена.

Тест в лаборатории

Лабораторное исследование проводится на велоэргометре. Тест начинается с 10-минутной разминки, сразу после которой берется кровяная проба (2 мл) и регистрируется ЧСС. Затем мощность нагрузки повышается через каждые 5 мин. По завершении каждой 5-минутки также берется кровяная проба и регистрируется ЧСС (таблица 3.5). Мощность нагрузки повышается до тех пор, пока спортсмен может поддерживать заданную нагрузку в течение 5 мин. Поскольку спортсмен выполняет непрерывную работу, пробы крови берутся прямо на ходу через маленькую пластиковую трубку, вставленную в вену на его руке. Во время теста кровь может браться в любое время. Концентрация лактата в отдельных образцах крови определяется лабораторным методом. На основе полученных данных строится лактатная кривая, которая укажет на анаэробный порог.

Таблица 3.5. Лактатный тест на велоэргометре.


На графиках 51 и 52 показаны результаты лабораторного тестирования спортсмена на велоэргометре. Спортсмен выполнял непрерывную работу с постепенным повышением нагрузки. Кровяные пробы брались непосредственно перед очередным повышением нагрузки. ЧСС измерялась непрерывно. Под кривой на графике 51 указаны концентрации лактата, соответствующие определенной ЧСС. Согласно данным теста была построена кривая зависимости между концентрацией лактата и ЧСС (график 52). Если учесть, что концентрация лактата на уровне анаэробного порога составляет примерно 4 ммоль/л, то анаэробный порог данного спортсмена соответствует 160 уд/мин.


Тест в полевых условиях

Уровень анаэробного порога можно установить при помощи лактатного теста, во время которого выполняется привычная для спортсмена работа, то есть во время передвижения гребца на байдарке, конькобежца на коньках, пловца в воде и т. д. Такой тест называется специальным. Считается, что специальный тест дает более точные результаты, поскольку нагрузка во время теста идентична той, которую спортсмен выполняет на тренировках и соревнованиях.

Примерная схема лактатного теста следующая: Тест состоит из нескольких рабочих отрезков продолжительностью 5 мин каждый (не менее). Перед тестом проводится 10-минутная разминка. Первый 5-минутный отрезок преодолевается спортсменом с низкой интенсивностью. Каждый последующий 5-минутный отрезок преодолевается с более высокой скоростью, чем предыдущий, но внутри каждого отрезка скорость сохраняется постоянной без финишного рывка в конце. Через каждые 5 мин нагрузки следует 10- минутная восстановительная пауза. На каждом рабочем отрезке фиксируется время прохождения последних 1000 метров дистанции (дистанция рассчитана для бегунов) и соответствующая им ЧСС. После каждого отрезка берется кровяная проба (таблица 3.6).

Таблица 3.6. Лактатный тест в полевых условиях.

Уровень лактата определяется с помощью специального портативного прибора — лактометра (который также может использоваться в лабораторном тестировании на велоэргометре). На основе полученных данных строится лактатная кривая, которая поможет установить анаэробный порог спортсмена и уровень его функционального состояния.

Для надежности лактатного теста спортсмен должен четко придерживаться следующих рекомендаций:

Всегда проводите тест в одних и тех же условиях и в одно и то же время дня.
Избегайте обильных приемов пищи за 5 ч до теста.
Воздержитесь от приема спиртных напитков за 24 ч до теста.
Соблюдайте режим ночного сна, избегайте недосыпания.
Воздержитесь от приема кофе, чая или других кофеинсодержащих продуктов за час до теста.
Исключите какие-либо тренировки или выполнение тяжелой физической работы в день теста.
Исключите любые энергичные тренировки за день до теста.
Всегда выполняйте тест при постоянной температуре и влажности воздуха.
Не выполняйте тест в болезненном состоянии или при высокой температуре.
Всегда проводите полноценную разминку перед тестом.

Ниже даются примеры выполнения лактатного теста на шоссе двумя бегунами. Хотя в нижеприведенных примерах участвуют бегуны, те же самые принципы тестирования могут использовать и другие спортсмены на выносливость, выполняя нагрузки, характерные для их вида спорта.

На графике 53 показана динамика ЧСС бегуна-марафонца во время выполнения лактатного теста на шоссе. На графике над кривой ЧСС приведены концентрации лактата и соответствующая им ЧСС, измеренные в ходе тестирования. Спортсмен пробегал 4 отрезка по 1 км с перерывами на отдых после каждого. Каждый следующий километр дистанции пробегался им быстрее предыдущего. После каждого километрового отрезка брался очередной образец крови. На основе полученных данных была построена лактатная кривая (график 54). В данном примере аэробный порог бегуна соответствует пульсу 132 уд/мин, а анаэробный — 142 уд/мин.


Тест другого бегуна состоял из трех беговых отрезков продолжительностью 10 мин каждый (см. график 55). Бегун повышал скорость бега от отрезка к отрезку (на самих отрезках скорость поддерживалась постоянной). По окончании каждого 10-минутного отрезка брался образец крови, а затем следовала пауза отдыха, продолжительность которой должна быть достаточно большой для того, чтобы организм успевал нейтрализовать молочную кислоту, образовавшуюся на беговом отрезке. Результаты тестирования представлены в таблице 3.7.

Таблица 3.7. Тестовые данные Данные измерений ЧСС при различных концентрациях лактата, установленная по лактатной кривой

Лактатный тест и оценка функционального состояния

Чтобы оценить смещение анаэробного порога относительно ЧССмакс необходимо строить график зависимости между лактатом и ЧСС. Однако у хорошо тренированных спортсменов сдвиг анаэробного порога наблюдается не всегда. Вместе с тем мощность педалирования (на велоэргометре) или скорость передвижения при одних и тех же концентрациях лактата может существенно измениться.

Например, скорость бегуна и ЧСС при концентрации лактата 2 ммоль/л (V2) составляли 3,64 м/с и 155 уд/мин соответственно, а скорость и ЧСС при содержании лактата 4 ммоль/л (V4) — 3,95 м/с и 165 уд/мин. После периода тренировок скорость V2 составила 4,00 м/с, а соответствующая ей ЧСС осталась прежней — 155 уд/мин. Скорость V4 составила 4,19 м/с, а соответствующая ей ЧСС также осталась прежней — 165 уд/мин (см. таблицу 3.8).

Таблица 3.8. Результаты тестирования бегуна.


Таким образом, для полного представления об изменении функционального состояния спортсмена необходимо помимо графика зависимости лактат/ЧСС, строить также график зависимости между лактатом и скоростью передвижения (или мощность нагрузки). При улучшении работоспособности лактатная кривая на одном или сразу на обоих графиках сдвинется вправо.

Концентрация лактата на уровне анаэробного порога

Как правило, при нагрузке на уровне анаэробного порога концентрация лактата равна 4 ммоль/л. Однако это не всегда так. У некоторых спортсменов концентрация лактата на уровне анаэробного порога может быть чуть ниже или чуть выше обычного — например, 3 или 6 ммоль/л. Следовательно, для более точного определения анаэробного порога иногда целесообразно использовать не только лактатный тест, но также неинвазивные методы тестирования, позволяющие найти точку отклонения (ЧССоткл). Тесты для нахождения точки отклонения уже были описаны в этой главе.

Тест Астранда

Тест Астранда применяется для оценки функционального состояния спортсмена по уровню максимального потребления кислорода (МПК). Чем выше МПК (л/мин), тем лучше функциональное состояние спортсмена. Метод Астранда является непрямым методом определения МПК, который не требует сложной дорогостоящей аппаратуры. В основе его лежит линейная зависимость между ЧСС и величиной потребления кислорода.

Для проведения теста необходим велоэргометр. Тест начинается с 3-минутной разминки, в течение которой мощность нагрузки постепенно повышается до 200-250 Вт, в зависимости от подготовленности спортсмена. Затем выполняется разовая непрерывная субмаксимальная работа продолжительностью 6 мин, в конце которой измеряется ЧСС. К концу теста ЧСС должна установиться на одном постоянном уровне. Рекомендуется подбирать такую мощность нагрузки, при которой ЧСС будет находиться в пределах 140-160 уд/мин. Частота педалирования — 50 об/мин.

Расчет МПК проводят по специальной номограмме Астранда (схема 3.4). Найденная с помощью номограммы величина МПК корригируется путем умножения на «возрастной фактор» (таблица 3.9). В таблице 3.10 представлена номограмма Астранда после расчета на основе субмаксимального нагрузочного теста на велоэргометре.

25-летний спортсмен весом 70 кг педалирует при постоянной нагрузке 200 Вт. Спустя 6 мин его пульс равен 146 уд/мин. Согласно номограмме Астранда и с учетом «возрастного фактора» его МПК составляет 4,4 л/мин.

Во многих видах спорта на выносливость вес спортсмена имеет большое значение: спортсмены с высоким МПК, но большой массой тела, могут иметь более низкий уровень функционального состояния. Поэтому уровень функционального состояния спортсмена определяется по относительной величине МПК, для чего МПК в мл/мин делится на массу тела в кг; то есть, 4,4 х 1000 мл/мин ч- 70 = 62,9 мл/кг/мин.

Схема 3.4. Номограмма Астранда.

Таблица 3.9. Возрастные поправочные коэффициенты к величинам МПК по номограмме Астранда.

Таблица 3.10 Определение максимального потребления кислорода по ЧСС при нагрузках на велоэргометре у мужчин и женщин. Данные таблицы должны быть скорригированы по возрасту (см. таблицу 3.9).

Таблица 3.10. (продолжение) Определение максимального потребления кислорода по ЧСС при нагрузках на велоэргометре у женщин.

Анаэробный порог, концентрация лактата и тренировочная интенсивность

В главе 2 уже говорилось о том, как находить зоны интенсивности тренировочных нагрузок из ЧССмакс и ЧССрезерв. Однако описанные методы довольно упрощенные. Наилучшим ориентиром для определения зон интенсивности нагрузки является индивидуальный анаэробный порог спортсмена (ЧССоткл, концентрация лактата 4 ммоль/л).

Почему анаэробный порог? Потому что принцип интенсивности нагрузки основан именно на анаэробном пороге. Анаэробный порог — это та интенсивность, выше которой в мышцах начинает накапливаться молочная кислота. Если необоснованно часто тренироваться с интенсивностью выше анаэробного порога, аэробные способности организма могут ухудшиться. Кроме того, анаэробный порог — это максимальная скорость бега, езды на велосипеде, передвижения на лыжах или в воде, которую спортсмен может поддерживать в течение длительного времени, не испытывая при этом преждевременной усталости. Эта скорость называется пороговой. Именно от пороговой скорости зависит результат спортсмена на длинных дистанциях. Установлено, что тренировки на уровне анаэробного порога в наибольшей степени способствуют увеличению пороговой скорости.

Согласно таблице 2.2 (с. 38) величина анаэробного порога для всех спортсменов примерно равна 90% ЧССмакс. Однако в действительности уровень анаэробного порога может существенно различаться у разных спортсменами, в зависимости от их тренированности. У спортсмена-любителя уровень анаэробного порога может составлять 75% ЧССмакс, а у высококвалифицированного спортсмена — 95% ЧССмакс.

Часто начинающие спортсмены, а иногда и спортсмены-любители со стажем выполняют аэробные тренировки при очень высокой интенсивности. Они не получают удовлетворения от тренировки, если не почувствуют себя изможденными к концу занятия. Такой подход приносит больше вреда, нежели пользы. Аэробные тренировки, которые составляют основную часть тренировочной программы спортсмена на выносливость, должны выполняться при концентрации лактата 2-4 ммоль/л, то есть ниже анаэробного порога. Уровень лактата во время восстановительных тренировок не должен превышать 2 ммоль/л. При выполнении высокоинтенсивных интервальных тренировок содержание лактата в крови намного превышает 4 ммоль/л. В таблице 3.11 приведены зоны интенсивности тренировочных нагрузок в процентном отношении от анаэробного порога (ЧССоткл), а также концентрации лактата, достигаемые в каждой из зон интенсивности.

Таблица 3.11. Зоны интенсивности нагрузки в процентном отношении от анаэробного порога (ЧССоткл)

Для установления зон интенсивности часто используют непосредственно результаты лактатного теста. Определив по лактатной кривой, какие величины ЧСС соответствуют концентрациям лактата 2, 3 и 4 ммоль/л, спортсмен может достаточно точно установить границы той или иной зоны интенсивности.

По мере того как повышается тренированность спортсмена и растут результаты в гонках, уровень анаэробного порога также изменяется. Для того чтобы отслеживать изменения функционального состояния и своевременно корректировать индивидуальные границы тренировочной интенсивности, рекомендуется регулярно выполнять функциональные тесты.

Кривые ЧСС бегуна при выполнении различных тренировок

График 57. Экстенсивный аэробный бег. Обычная/средняя интенсивность. Большая продолжительность L 1,5-2,5.

График 57. Экстенсивный аэробный бег. Обычная/средняя интенсивность. Сверхбольшая продолжительность L 1-2.

График 58. Восстановительная тренировка (бег трусцой). Низкая интенсивность. Небольшая продолжительность. L 0,5-1,5.

График 59. Интенсивная тренировка. Тестовый бег. Высокая интенсивность. Большая/средняя продолжительность L 2,5-3,5.

График 60. Переменная тренировка. Высокая интенсивность. Небольшая/средняя продолжительность. L 2,5-5.

График 61. Переменная тренировка. Переменная интенсивность (может варьироваться от низкой до очень высокой, от восстановительной до анаэробной). L 0.5-L10.

График 62. Экстенсивные средние/длинные интервалы. Интенсивность от средней до высокой, 1-5 мин. L3-L4,5 с недовосстановлением.

График 63. Экстенсивные длинные интервалы. Интенсивность от средней до высокой, 5-15 мин. L3-L3.5 с недовосстановлением.

График 64. Интенсивные интервалы. Высокая интенсивность. Короткая продолжительность (1-15 мин). L3-L7 с неполным восстановлением.

График 65. Повторная тренировка, экстенсивная. Интенсивность от средней до высокой. Большая продолжительность ускорений (5-15 мин). L2.5-L4 с неполным восстановлением.

График 66. Повторная тренировка, интенсивная. Высокая интенсивность. Средняя продолжительность ускорений (3-5 мин). L3-L5 с недовосстановлением.

График 67. Тестовый бег или гонка. Продолжительность: средняя/большая. Дистанция: полумарафон. Высокая интенсивность. L3.5-L5. Интенсивность постоянно находится около точки отклонения.

График 68. Гонка, 50-60 мин (бег на 15 км, 50-60 мин), интенсивность постоянно находится на уровне или выше точки отклонения L4-L6.

График 69. Гонка, 30-40 минут (бег на 10 км) интенсивность постоянно находится выше точки отклонения (5-10% аэробной энергии) L4-L6.

График 70. Гонка, 15-20 минут (5 км) интенсивность постоянно выше точки отклонения (5-10% аэробной энергии) L4-L10.

График 71. Гонка, 10 мин (3 км), интенсивность постоянно выше точки отклонения (5-10% аэробной энергии) L4-L10.

График 72. Гонка, 1,-2 часа (25-30 км), интенсивность чуть ниже точки отклонения L3-L4.

График 73. Марафон, 2,5-3,5 часа, интенсивностьниже или чуть ниже точки отклонения L2- L3.