Как генетический код влияет на характер и судьбу.

07.04.2015 13.10.2015

Заказать проведение днк теста

Оставьте свой телефон и мы перезвоним Вам в ближайшее время

Заказать звонок

В эпоху нано-технологий и новаций во всех сферах жизни человека, необходимо знать многое для самоуверенности и общения с людьми. Технологии двадцать первого века шагнули очень далеко, например, в сфере медицины и генетики. В настоящей статье попробуем подробно описать наиглавнейший шаг человечества в исследованиях ДНК.

Описание кода ДНК

Что же такое – этот код? Код вырожден генетическими свойствами и занимаются его исследованием ученые генетики. Этим кодом наделены все живые существа нашей планеты. Научно определяется как метод белковой последовательности аминокислот с помощью цепочки нуклеотидов.
Так называемый алфавит состоит из четырех основ, обозначающихся А, Г, Т, Ц:
А – аденин,
Г – гуанин,
Т – тимин,
Ц – цитозин.
Цепь кода представляет собой спираль последовательно составленных выше описанных основ, получается, что каждой ступеньки спирали соответствует определенная буква.
Вырожден код ДНК белками, которые участвуют в составлении и складываются из цепочек. В которых участвуют двадцать видов аминокислот. Аминокислоты раскрывающего кода имеют название канонические, выстраиваются определенным образом в каждом существе и образуют белковые звенья.

История выявления

Изучение белков и кислот человечество занимается с давнего времени, но первые гипотезы и постановление теории о наследственности возникли только в середине двадцатого века. К этому моменту ученые собрали достаточное количество знаний этого вопроса.
В 1953 году исследования показали, что белок отдельного организма имеет уникальную цепочку из аминокислот. Далее было выведено, что эта цепочка не имеет никакого ограничения в полипептиде.

Сравнивались записи различных мировых ученых, которые были различны. Поэтому сформировалось определенное понятие: каждому гену соответствует определенный полипептид. В это же время возникает название ДНК, которое определенно доказано, что не белок.
Исследователи Крик и Уотсон впервые говорили о матричной схеме объясняющего шифра в 1953 году. В самой последней работе великих ученых был доказан факт, что шифр является носителем информации.

Впоследствии оставалось разобраться только в вопросе определения и формирования цепочек аминокислот белка, основания и свойства.

Первым ученым, построившим гипотезу генетического кодирования, был физик Гамов, который также предложил определенный способ проверки матрицы.

Генетики предположили установить соответствие между двумя боковыми перекладинами цепи аминокислот и образующимися ромбовидными ступеньками. Ромбовидные ступени цепи образуются при помощи четырех нуклеотидов генетического кода. Это соответствие было названо бубновым.
Гамов в дальнейшем своем исследовании предлагает теорию триплетного кода. Это предположение становится первостепенным в вопросе о природе генетического кода. Хотя теория физика Гамова имеет недостатки, одним из которых является кодирование структуры белков через генетический код.
Соответственно Георгий Гамов стал первым ученым, который рассмотрел вопрос о генах как кодирование четырехзначной системы в переводе её в двадцатизначный основополагающий факт.

Принцип действия

Один белок составлен из нескольких верениц аминокислот. Логичность связующих цепочек, определяет строение и характеристики белка организма, что соответственно способствует выявлению информации о биологических параметрах живого существа.

Информация из живых клеток добывается двумя матричными процессами:
Транскрипцией, то есть синтезированным процессом слияния матриц РНК и ДНК.
Трансляцией, то есть синтезирование цепочки полипептидов на матрице РНК.
В процессе трансляции генетический код перенаправлен в логичную цепочку аминокислот.

Для выявления и реализации информации генов необходимо не менее трех цепочных нуклеотидов, при рассмотрении двадцати строго последовательных аминокислот. Такой набор из трех нуклеотидов обозначается как триплет.
Генетические коды распределены между двумя категориями:
Перекрывающие – код минорный, треугольный и последовательный.
Неперекрывающиеся – код комбинационный и «без запятых».
Исследования доказывали что порядок аминокислот хаотичен и соответственно индивидуально, на основе этого учены отдают предпочтение кодам неперекрывающимся. Впоследствии теория «без запятых» была опровергнута.
Для чего необходимо знать код ДНК
Знания о генетическом коде живого организма позволяют определить информацию молекул в наследственном и эволюционном смысле. Необходима запись наследственности, выявляет исследования по формированию системных знаний в мире генетики.
Универсальность генетического кода считается самым уникальным свойством живого организма. На основе данных можно получить ответы на большинство вопросов медицинского и генетического характера.

Использование знаний в медицине и генетике

Достижение в молекулярной биологии двадцатого века позволило широко шагнуть в исследованиях болезней и вирусов имеющих различные основания. Информация о генетическом коде повсеместно используется в медицине и генетики.
Выявление природы определенного заболевания либо вируса накладывается на исследование генетического развития. Знания и формирование теорий и практик способны вылечить трудно-излечимые или неизлечимые заболевания современного мира и будущего.

Перспективы развития

Так как научно доказано что в генетическом коде заложена информация не только о наследственности, но и о продолжительности жизни организма, развитие генетики задается вопросом о бессмертии и о долголетии. Эта перспектива поддерживается рядом гипотез наземного бессмертия, клетки раковых заболеваний, стволовые клетки человека.

Научный сотрудник технического института П. Гаряев в 1985 году обнаружил по случайности спектрального анализа пустое место, названное впоследствии фантом. Фантомы определяют умершие генетические молекулы.
Что обозначило в дальнейшем теорию об изменении живого организма со временем, которое предполагает, что человек способен жить более четыреста лет.
Феноменом является то, что клетки ДНК способны издавать звуковые колебания в сто герц. То есть ДНК может говорить.

Генетический код - это способ кодирования последовательности аминокислот в молекуле белка с помощью последовательности нуклеотидов в молекуле нуклеиновой кислоты. Свойства генетического кода вытекают из особенностей этого кодирования.

Каждой аминокислоте белка сопоставляется в соответствие три подряд идущих нуклеотида нуклеиновой кислоты - триплет , или кодон . Каждый из нуклеотидов может содержать одно из четырех азотистых оснований. В РНК это аденин (A), урацил (U), гуанин (G), цитозин (C). По-разному комбинируя азотистые основания (в данном случае содержащие их нуклеотиды) можно получить множество различных триплетов: AAA, GAU, UCC, GCA, AUC и т. д. Общее количество возможных комбинаций - 64, т. е. 4 3 .

В состав белков живых организмов входит около 20 аминокислот. Если бы природа «задумала» кодировать каждую аминокислоту не тремя, а двумя нуклеотидами, то разнообразия таких пар не хватило бы, так как их оказалось бы всего 16, т.е. 4 2 .

Таким образом, основное свойство генетического кода - его триплетность . Каждая аминокислота кодируется тройкой нуклеотидов.

Поскольку возможных разных триплетов существенно больше, чем используемых в биологических молекулах аминокислот, то в живой природе было реализовано такое свойство как избыточность генетического кода. Многие аминокислоты стали кодироваться не одним кодоном, а несколькими. Например, аминокислота глицин кодируется четырьмя различными кодонами: GGU, GGC, GGA, GGG. Избыточность также называют вырожденностью .

Соответствие между аминокислотами и кодонами отражают в виде таблиц. Например, таких:

По отношению к нуклеотидам генетический код обладает таким свойством как однозначность (или специфичность ): каждый кодон соответствует только одной аминокислоте. Например, кодоном GGU можно закодировать только глицин и больше никакую другую аминокислоту.

Еще раз. Избыточность - это про то, что несколько триплетов могут кодировать одну и ту же аминокислоту. Специфичность - каждый конкретный кодон может кодировать только одну аминокислоту.

В генетическом коде нет специальных знаков препинания (если не считать стоп-кодонов, обозначающих окончание синтеза полипептида). Функцию знаков препинания выполняют сами триплеты - окончание одного обозначает, что следом начнется другой. Отсюда следуют следующие два свойства генетического кода: непрерывность и неперекрываемость . Под непрерывность понимают считывание триплетов сразу друг за другом. Под неперекрываемостью - то, что каждый нуклеотид может входить в состав только одного триплета. Так первый нуклеотид следующего триплета всегда стоит после третьего нуклеотида предшествующего триплета. Кодон не может начаться со второго или третьего нуклеотида предшествующего кодона. Другими словами, код не перекрывается.

Генетический код обладает свойством универсальности . Он един для всех организмов на Земле, что говорит о единстве происхождения жизни. При этом встречаются очень редкие исключения. Например, некоторые триплеты митохондрий и хлоропластов кодируют другие, а не обычные для них, аминокислоты. Это может говорить о том, что на заре развития жизни существовали немного различные вариации генетического кода.

Наконец, генетический код обладает помехоустойчивостью , которая является следствием такого его свойства как избыточность. Точечные мутации , иногда происходящие в ДНК , обычно приводят к замене одного азотистого основания на другое. При этом изменяется триплет. Например, было AAA, после мутации стало AAG. Однако подобные изменения не всегда приводят к изменению аминокислоты в синтезируемом полипептиде, так как оба триплета из-за свойства избыточности генетического кода могут соответствовать одной аминокислоте. Учитывая, что мутации чаще вредны, свойство помехоустойчивости полезно.

Химический состав и структурная организация молекулы днк.

Молекулы нуклеиновых кислот представляют собой очень длинные цепи, состоящие из многих сотен и даже миллионов нуклеотидов. Любая нуклеиновая кислота содержит всего четыре типа нуклеотидов. Функции молекул нуклеиновых кислот зависят от их строения, входящих в их состав нуклеотидов, их числа в цепи и последовательности соединения в молекуле.

Каждый нуклеотид состоит из трех компонентов: азотистого основания, углевода и фосфорной кислоты. В состав каждого нуклеотида ДНК входит один из четырех типов азотистых оснований (аденин - А, тимин - Т, гуанин - Г или цитозин - Ц), а также угле вод дезоксирибоза и остаток фосфорной кислоты.

Таким образом, нуклеотиды ДНК различаются лишь типом азотистого основания.
Молекула ДНК состоит из огромного множества нуклеотидов, соединенных в цепочку в определенной последовательности. Каждый вид молекулы ДНК имеет свойственное ей число и последовательность нуклеотидов.

Молекулы ДНК очень длинные. Например, для буквенной записи последовательности нуклеотидов в молекулах ДНК из одной клетки человека (46 хромосом) потребовалась бы книга объемом около 820000 страниц. Чередование четырех типов нуклеотидов может образовать бесконечное множество вариантов молекул ДНК. Указанные особенности строения молекул ДНК позволяют им хранить огромный объем информации обо всех признаках организмов.

В 1953 г. американским биологом Дж. Уотсоном и английским физиком Ф. Криком была создана модель строения молекулы ДНК. Ученые установили, что каждая молекула ДНК состоит из двух цепей, связанных между собой и спирально закрученных. Она имеет вид двойной спирали. В каждой цепи четыре типа нуклеотидов чередуются в определенной последовательности.

Нуклеотидный состав ДНК различается у разных видов бактерий, грибов, растений, животных. Но он не меняется с возрастом, мало зависит от изменений окружающей среды. Нуклеотиды парные, то есть число адениновых нуклеотидов в любой молекуле ДНК равно числу тимидиновых нуклеотидов (А-Т), а число цитозиновых нуклеотидов равно числу гуаниновых нуклеотидов (Ц-Г). Это связано с тем, что соединение двух цепей между собой в молекуле ДНК подчиняется определенному правилу, а именно: аденин одной цепи всегда связан двумя водородными связями только с Тимином другой цепи, а гуанин - тремя водородными связями с цитозином, то есть нуклеотидные цепи одной молекулы ДНК комплементарны, дополняют друг друга.



Молекулы нуклеиновых кислот - ДНК и РНК состоят из нуклеотидов. В состав нуклеотидов ДНК входит азотистое основание (А, Т, Г, Ц), углевод дезоксирибоза и остаток молекулы фосфорной кислоты. Молекула ДНК представляет собой двойную спираль, состоящую из двух цепей, соединенных водородными связями по принципу комплементарности. Функция ДНК - хранение наследственной информации.

Свойства и функции днк.

ДНК является носителем генетической информации, записанной в виде последовательности нуклеотидов с помощью генетического кода. С молекулами ДНК связаны два основополагающих свойства живых организмов - наследственность и изменчивость. В ходе процесса, называемого репликацией ДНК, образуются две копии исходной цепочки, наследуемые дочерними клетками при делении, таким образом образовавшиеся клетки оказываются генетически идентичны исходной.

Генетическая информация реализуется при экспрессии генов в процессах транскрипции (синтеза молекул РНК на матрице ДНК) и трансляции (синтеза белков на матрице РНК).

Последовательность нуклеотидов «кодирует» информацию о различных типах РНК: информационных, или матричных (мРНК), рибосомальных (рРНК) и транспортных (тРНК). Все эти типы РНК синтезируются на основе ДНК в процессе транскрипции. Роль их в биосинтезе белков (процессе трансляции) различна. Информационная РНК содержит информацию о последовательности аминокислот в белке, рибосомальные РНК служат основой для рибосом (сложных нуклеопротеиновых комплексов, основная функция которых - сборка белка из отдельных аминокислот на основе иРНК), транспортные РНК доставляют аминокислоты к месту сборки белков - в активный центр рибосомы, «ползущей» по иРНК.

Генетический код, его свойства.

Генети́ческий код - свойственный всем живым организмам способ кодирования аминокислотной последовательности белков при помощи последовательности нуклеотидов. СВОЙСТВА:

  1. Триплетность - значащей единицей кода является сочетание трёх нуклеотидов (триплет, или кодон).
  2. Непрерывность - между триплетами нет знаков препинания, то есть информация считывается непрерывно.
  3. Неперекрываемость - один и тот же нуклеотид не может входить одновременно в состав двух или более триплетов (не соблюдается для некоторых перекрывающихся генов вирусов, митохондрий и бактерий, которые кодируют несколько белков, считывающихся со сдвигом рамки).
  4. Однозначность (специфичность) - определённый кодон соответствует только одной аминокислоте (однако, кодон UGA у Euplotes crassus кодирует две аминокислоты - цистеин и селеноцистеин)
  5. Вырожденность (избыточность) - одной и той же аминокислоте может соответствовать несколько кодонов.
  6. Универсальность - генетический код работает одинаково в организмах разного уровня сложности - от вирусов до человека (на этом основаны методы генной инженерии; есть ряд исключений, показанный в таблице раздела «Вариации стандартного генетического кода» ниже).
  7. Помехоустойчивость - мутации замен нуклеотидов, не приводящие к смене класса кодируемой аминокислоты, называют консервативными ; мутации замен нуклеотидов, приводящие к смене класса кодируемой аминокислоты, называют радикальными .

5. Ауторепродукция днк. Репликон и его функционирование .

Процесс самовоспроизведения молекул нуклеиновых кислот, сопровождающийся передачей по наследству (от клетки к клетке) точных копий генетической информации; Р . осуществляется с участием набора специфических ферментов (хеликаза <helicase >, контролирующая расплетание молекулы ДНК , ДНК -полимеразы <DNA polymerase > I и III, ДНК -лигаза <DNA ligase >), проходит по полуконсервативному типу с образованием репликативной вилки <replication fork >; на одной из цепей <leading strand > синтез комплементарной цепи непрерывен, а на другой <lagging strand > происходит за счет образования фрагментов Дказаки <Okazaki fragments >; Р . - высокоточный процесс, частота ошибок при котором не превышает 10 -9 ; у эукариот Р . может происходить сразу в нескольких точках одной молекулы ДНК ; скорость Р . у эукариот около 100, а у бактерий - около 1000 нуклеотидов в сек.

6. Уровни организации генома эукариот .

У эукариотических организмов механизм регуляции транскрипции гораздо более сложен. В результате клонирования и секвенирования генов эукариот обнаружены специфические последовательности, принимающие участие в транскрипции и трансляции.
Для эукариотической клетки характерно:
1. Наличие интронов и экзонов в молекуле ДНК.
2. Созревание и-РНК - вырезание интронов и сшивка экзонов.
3. Наличие регуляторных элементов, регулирующих транскрипцию, таких как: а) промоторы - 3 вида, на каждый из которых садится специфическая полимераза. Pol I реплицирует рибосомные гены, Pol II - структурные гены белков, Pol III - гены, кодирующие небольшие РНК. Промотор Pol I и Pol II находятся перед участком инициации транскрипции, промотор Pol III - в рамках структурного гена; б) модуляторы - последовательности ДНК, усиливающие уровень транскрипции; в) усилители - последовательности, усиливающие уровень транскрипции и действующие независимо от своего положения относительно кодирующей части гена и состояния начальной точки синтеза РНК; г) терминаторы - специфические последовательности, прекращающие и трансляцию, и транскрипцию.
Эти последовательности по своей первичной структуре и расположению относительно инициирующего кодона отличаются от прокариотических, и бактериальная РНК-полимераза их не "узнает". Таким образом, для экспрессии эукариотических генов в клетках прокариот нужно, чтобы гены находились под контролем прокариотических регуляторных элементов. Это обстоятельство необходимо учитывать при конструировании векторов для экспрессии.

7. Химический и структурный состав хромосом .

Химический состав хромосом - ДНК- 40%, Гистоновых белков - 40%. Негистоновых - 20% немного РНК. Липиды,полисахариды,ионы металлов.

Химический состав хромосомы это - комплекс нуклеиновых кислот с белками, углеводами, липидами и металлами. В хромосоме происходит регуляция активности генов и их восстановление при химическом или радиационном повреждении.

СТРУКТУРНЫЙ????

Хромосомы - нуклеопротеидные структурные Элементы ядра клетки, содержащие, днк, в которой заключена наследственная Информация организма, способны к самовоспроизведению, обладают структурной и функциональной индивидуальностью и сохраняют её в ряду поколений.

в митотическом цикле наблюдаются следующие Особенности структурной организации хромосом:

Различают митотическую и интерфазные формы Структурной организации хромосом, взаимопереходящие друг в друга в митотическом Цикле - это функциональные и физиологические превращения

8. Уровни упаковки наследственного материала у эукариот .

Структурно-функциональные уровни организации наследственного материала эукариот

Наследственность и изменчивость обеспечивают:

1) индивидуальное (дискретное) наследование и изменение отдельных признаков;

2) вос­произведение в особях каждого поколения всего комплекса морфофункциональных характеристик организмов конкретного биологическо­го вида;

3) перераспределение у видов с половым размножением в процесс воспроизведения наследственных задатков, в результате чего потомок имеет сочетание признаков, отличное от их сочетания у родителей. Закономерности наследования и изменчивости признаков и их совокупностей вытекают из принципов структурно-функциональной организации генетического материала.

Различают три уровня организа­ции наследственного материала эукариотических организмов: генный, хромосомный и геномный (уровень генотипа).

Элементарной структурой генного уровня служит ген. Передача генов от родителей потомку необходима для развития у него определенных признаков. Хотя известно несколько форм биологической изменчивости, только нарушение структуры генов изменяет смысл наследственной информации, в соответствии с которой формируются конкретные признаки и свойства. Благодаря наличию генного уровня возможно индивидуальное, раздельное (дискретное) и независимое наследование и изменения отдельных признаков.

Гены клеток эукариот распределены группами по хро­мосомам. Это структуры клеточного ядра, которым свойст­венна индивидуальность и способность к самовоспроизведению с сохранением в ряду поколений индивидуальных черт строения. Наличие хромосом обусловливает выделение хромосомного уровня организации наследственного материала. Размещение генов в хромосо­мах влияет на соотносительное наследование признаков, делает возможным воздействия на функцию гена со стороны его ближайшего генетического окружения - соседних генов. Хромосомная организация наследственного материала служит необходимым условием перераспре­деления наследственных задатков родителей в потомках при половом размножении.

Несмотря на распределение по разным хромосомам, вся со­вокупность генов в функциональном отношении ведет себя как целое, образуя единую систему, представляющую геномный (генотипический) уровень организации наследственного материала. На этом уровне происходит широкое взаимодействие и взаимовлияние наследственных задатков, локализующихся как в одной, так и в разных хромосомах. Итогом является взаимосоответствие генетической информации разных наследственных задатков и, следова­тельно, сбалансированное по времени, месту и интенсивности развитие признаков в процессе онтогенеза. Функциональная активность генов, режим репликации и мутационных изменений наследственного матери­ала также зависят от характеристик генотипа организма или клетки в целом. Об этом свидетельствует, например, относительность свойства доминантности.

Эу - и гетерохроматин.

Некото­рые хромосомы во время клеточного деления выглядят конденси­рованными и интенсивно окрашенными. Такие различия были названы гетеропикнозом. Для обозначения районов хромосом, демонстрирующих положительный гетеропик­ноз на всех стадиях митотического цикла был предложен термин «гетерохроматин ». Различают эухроматин - основную часть митотических хромосом, которая претерпевает обычный цикл компактизации декомпактизации во время ми­тоза, и гетерохроматин - участки хромосом, постоянно находящиеся в компактном состоя­нии.

У большинства видов эукариот хромосо­мы содержат как эу -, так и гетерохроматино­вые участки, причем последние составляют значительную часть генома. Гетерохроматин располагается в прицентромерных, иногда в прителомерных областях. Обнаружены гетерохроматиновые участки в эухроматиновых плечах хромосом. Они выглядят как вкрапления (интеркаляции) гетерохроматина в эухроматин. Такой гетеро­хроматин называют интеркалярным. Компактизация хроматина. Эухроматин и гетерохроматин различаются по циклам компактизации. Эухр. проходит полный цикл компактизации-декомпактизации от интерфазы до интерфазы, гетеро. сохраняет состояние от­носительной компактности. Дифференциальная окрашиваемость. Разные участки гетерохроматина окраши­ваются разными красителями, некоторые рай­оны - каким-то одним, другие - несколькими. Применяя различные красители и используя хромосомные перестройки, разры­вающие гетерохроматиновые районы, у дрозо­филы удалось охарактеризовать много неболь­ших районов, где сродство к окраскам отлично от соседних участках.

10. Морфологические особенности метафазной хромосомы .

Метафазная хромосома состоит из двух продольных нитей дезоксирибонуклеопротеида - хроматид, соединенных друг с другом в области первичной перетяжки - центромеры. Центромера - особым образом организованный участок хромосомы, общий для обеих сестринских хроматид. Центромера делит тело хромосомы на два плеча. В зависимости от расположения первичной перетяжки различают следующие типы хромосом: равноплечие (метацентрические), когда центромера расположена посередине, а плечи примерно равной длины; неравноплечие (субметацентрические), когда центромера смещена от середины хромосомы, а плечи неравной длины; палочковидные (акроцентрические), когда центромера смещена к одному концу хромосомы и одно плечо очень короткое. Существуют еще точковые (телоцентрические) хромосомы, у них одно плечо отсутствует, но в кариотипе (хромосомном наборе) человека их нет. В некоторых хромосомах могут быть вторичные перетяжки, отделяющие от тела хромосомы участок, называемый спутником.

В любой клетке и организме все особенности анатомического, морфологического и функционального характера определяются структурой белков, которые входят в них. Наследственным свойством организма является способность к синтезу определенных белков. В аминокислоты расположены в полипептидной цепочке, от которой зависят биологические признаки.
Для каждой клетки характерна своя последовательность нуклеотидов в полинуклеотидной цепи ДНК. Это и есть генетический код ДНК. Посредством его записывается информация о синтезе тех или иных белков. О том, что такое генетический код, о его свойствах и генетической информации рассказывается в этой статье.

Немного истории

Идея о том, что, возможно, генетический код существует, была сформулирована Дж.Гамовым и А.Дауном в середине двадцатого столетия. Они описали, что последовательность нуклеотидов, отвечающая за синтез определенной аминокислоты, содержит по меньшей мере три звена. Позже доказали точное количество из трех нуклеотидов (это единица генетического кода), которое назвали триплет или кодон. Всего нуклеотидов насчитывается шестьдесят четыре, потому что молекулы кислот, где происходит или РНК, состоит из остатков четырех различных нуклеотидов.

Что такое генетический код

Способ кодирования последовательности белков аминокислот благодаря последовательности нуклеотидов характерен для всех живых клеток и организмов. Вот что такое генетический код.
В ДНК есть четыре нуклеотида:

  • аденин - А;
  • гуанин - Г;
  • цитозин - Ц;
  • тимин - Т.

Они обозначаются заглавными буквами латинскими или (в русскоязычной литературе) русскими.
В РНК также присутствуют четыре нуклеотида, однако один из них отличается от ДНК:

  • аденин - А;
  • гуанин - Г;
  • цитозин - Ц;
  • урацил - У.

Все нуклеотиды выстраиваются в цепочки, причем в ДНК получается двойная спираль, а в РНК — одинарная.
Белки строятся на двадцати аминокислотах, где они, расположенные в определенной последовательности, определяют его биологические свойства.

Свойства генетического кода

Триплетность. Единица генетического кода состоит из трех букв, он триплетен. Это означает, что двадцать существующих аминокислот зашифрованы тремя определенными нуклеотидами, которые называются кодонами или трилпетами. Существуют шестьдесят четыре комбинации, которые можно создать из четырех нуклеотидов. Этого количества более чем достаточно для того, чтобы закодировать двадцать аминокислот.
Вырожденность. Каждая аминокислота соответствует более чем одному кодону, за исключением метионина и триптофана.
Однозначность. Один кодон шифрует одну аминокислоту. Например, в гене здорового человека с информацией о бета-цели гемоглобина триплет ГАГ и ГАА кодирует А у всех, кто болен серповидноклеточной анемией, один нуклеотид заменен.
Коллинеарность. Последовательность аминокислот всегда соответствует последовательности нуклеотидов, которую содержит ген.
Генетический код непрерывен и компактен, что означает то, что он не имеет «знаков препинания». То есть, начинаясь на определенном кодоне, идет непрерывное считывание. К примеру, АУГГУГЦУУААУГУГ будет считываться как: АУГ, ГУГ, ЦУУ, ААУ, ГУГ. Но никак не АУГ, УГГ и так далее или как-то еще иначе.
Универсальность. Он един абсолютно для всех земных организмов, от людей до рыб, грибов и бактерий.

Таблица

В представленной таблице присутствуют не все имеющиеся аминокислоты. Гидроксипролин, гидроксилизин, фосфосерин, иодопроизводных тирозина, цистин и некоторые другие отсутствуют, так как они являются производными других аминокислот, кодирующихся м-РНК и образующихся после модификации белков в результате трансляции.
Из свойств генетического кода известно, что один кодон способен кодировать одну аминокислоту. Исключением является выполняющий дополнительные функции и кодирующий валин и метионин, генетический код. ИРНК, находясь в начале с кодоном, присоединяет т-РНК, которая несет формилметион. По завершении синтеза он отщепляется сам и захватывает за собой формильный остаток, преобразуясь в остаток метионина. Так, вышеупомянутые кодоны являются инициаторами синтеза цепи полипептидов. Если же они находятся не в начале, то ничем не отличаются от других.

Генетическая информация

Под этим понятием подразумевается программа свойств, которая передается от предков. Она заложена в наследственности как генетический код.
Реализуется при синтезе белка генетический код :

  • информационной и-РНК;
  • рибосомальной р-РНК.

Информация передается прямой связью (ДНК-РНК-белок) и обратной (среда-белок-ДНК).
Организмы могут получать, сохранять, передавать ее и использовать при этом наиболее эффективно.
Передаваясь по наследству, информация определяет развитие того или иного организма. Но из-за взаимодействия с окружающей средой реакция последнего искажается, благодаря чему и происходит эволюция и развитие. Таким образом в организм закладывается новая информация.


Вычисление закономерностей молекулярной биологии и открытие генетического кода проиллюстрировали то, что необходимо соединить генетику с теорией Дарвина, на основе чего появилась синтетическая теория эволюции — неклассическая биология.
Наследственность, изменчивость и естественный отбор Дарвина дополняются генетически определяемым отбором. Эволюция реализуется на генетическом уровне путем случайных мутаций и наследованием самых ценных признаков, которые наиболее адаптированы к окружающей среде.

Расшифровка кода у человека

В девяностых годах был начат проект Human Genome, в результате чего в двухтысячных были открыты фрагменты генома, содержащие 99,99% генов человека. Неизвестными остались фрагменты, которые не участвуют в синтезе белков и не кодируются. Их роль пока остается неизвестной.

Последняя открытая в 2006 году хромосома 1 является самой длинной в геноме. Более трехсот пятидесяти заболеваний, в том числе рак, появляются в результате нарушений и мутаций в ней.

Роль подобных исследований трудно переоценить. Когда открыли, что такое генетический код, стало известно, по каким закономерностям происходит развитие, как формируется морфологическое строение, психика, предрасположенность к тем или иным заболеваниям, обмен веществ и пороки индивидов.

Проработав эти темы, Вы должны уметь:

  1. Охарактеризовать приведенные ниже понятия и объяснить соотношения между ними:
    • полимер, мономер;
    • углевод, моносахарид, дисахарид, полисахарид;
    • липид, жирная кислота, глицерин;
    • аминокислота, пептидная связь, белок;
    • катализатор, фермент, активный центр;
    • нуклеиновая кислота, нуклеотид.
  2. Перечислить 5-6 причин, которые делают воду столь важным компонентом живых систем.
  3. Назвать четыре главных класса органических соединений содержащихся в живых организмах; охарактеризовать роль каждого из них.
  4. Объяснить, почему контролируемые ферментами реакции зависят от температур, рН и присутствием коферментов.
  5. Рассказать о роли АТФ в энергетическом хозяйстве клетки.
  6. Назвать исходные вещества, основные этапы и конечные продукты реакций, вызываемых светом и реакции фиксации углерода.
  7. Дать краткое описание общей схемы клеточного дыхания, из которого было бы ясно, какое место занимают реакции гликолиза, цикла Г.Кребса (цикла лимонной кислоты) и цепь переноса электронов.
  8. Сравнить дыхание и брожение.
  9. Описать строение молекулы ДНК и объяснить почему число остатков аденина равно числу остатков тимина, а число остатков гуанина равно числу остатков цитозина.
  10. Составить краткую схему синтеза РНК на ДНК (транскрипция) у прокариот.
  11. Описать свойства генетического кода и объяснить, почему он должен быть триплетным.
  12. Исходя из данной цепи ДНК и таблицы кодонов определить комплементарную последовательность матричной РНК, указать кодоны транспортной РНК и аминокислотную последовательность, которая образуется в результате трансляции.
  13. Перечислить этапы белкового синтеза на уровне рибосом.

Алгоритм решения задач.

Тип 1. Самокопирование ДНК.

Одна из цепочек ДНК имеет такую последовательность нуклеотидов:
АГТАЦЦГАТАЦТЦГАТТТАЦГ...
Какую последовательность нуклеотидов имеет вторая цепочка той же молекулы?

Чтобы написать последовательность нуклеотидов второй цепочки молекулы ДНК, когда известна последовательность первой цепочки, достаточно заменить тимин на аденин, аденин на тимин, гуанин- на цитозин и цитозин на гуанин. Произведя такую замену, получаем последовательность:
ТАЦТГГЦТАТГАГЦТАААТГ...

Тип 2. Кодирование белков.

Цепочка аминокислот белка рибонуклеазы имеет следующее начало: лизин-глутамин-треонин-аланин-аланин-аланин-лизин...
С какой последовательности нуклеотидов начинается ген, соответствующий этому белку?

Для этого следует воспользоваться таблицей генетического кода. Для каждой аминокислоты находим ее кодовое обозначение в виде соответствующей тройки нуклеотидов и выписываем его. Располагая эти тройки друг за другом в таком же порядке, в каком идут соответствующие им аминокислоты, получаем формулу строения участка информационной РНК. Как правило таких троек несколько, выбор делается по Вашему решению (но, берется только одна из троек). Решений соответственно может быть несколько.
АААЦАААЦУГЦГГЦУГЦГААГ

С какой последовательности аминокислот начинается белок, если он закодирован такой последовательностью нуклеотидов:
АЦГЦЦЦАТГГЦЦГГТ...

По принципу комплементарности находим строение участка информационной РНК, образующейся на данном отрезке молекулы ДНК:
УГЦГГГУАЦЦГГЦЦА...

Затем обращаемся к таблице генетического кода и для каждой тройки нуклеотидов, начиная с первой, находим и выписываем соответствующую ей аминокислоту:
Цистеин-глицин-тирозин-аргинин-пролин-...

Иванова Т.В., Калинова Г.С., Мягкова А.Н. "Общая биология". Москва, "Просвещение", 2000

  • Тема 4. "Химический состав клетки." §2-§7 стр. 7-21
  • Тема 5. "Фотосинтез." §16-17 стр. 44-48
  • Тема 6. "Клеточное дыхание." §12-13 стр. 34-38
  • Тема 7. "Генетическая информация." §14-15 стр. 39-44